Построение графиков функций у=f(х)+b и у=f(x+а)

Общая схема построения графика функциис помощью геометрических преобразований

Рассмотрим функцию , которая «базируется» на некоторой функции . Для многих читателей алгоритм построения графика уже понятен:

– на первом шаге выполняем преобразования, связанные с АРГУМЕНТОМ функции (см. первые два параграфа), в результате чего получаем график функции ;

– на втором шаге выполняем только что рассмотренные преобразования, связанные с самой ФУНКЦИЕЙ, и получаем график .

Завершим самое длинное построение данного урока:

Пример 19 (концовка Примера 10)

Построить график функции

В примере № 10 мы выполнили построение графика , то есть полностью разобрались с аргументом функции. И сейчас осталось выполнить завершающие шаги.

График функции :

4) отобразим симметрично относительно оси : ;
5) сдвинем вдоль оси  на 3 единицы вверх: :

На практике, к счастью, построения почти всегда более коротки, например:

 – кубическую параболу  сдвигаем вдоль оси  на 5 единиц вправо и сжимаем вдоль оси  в 3 раза.

 – график экспоненты отображаем симметрично относительно оси ординат, затем – симметрично относительно оси абсцисс.

 – график функции  смещаем влево на 5 единиц, затем – вверх на 1 единицу.

И т.д. Некоторые геометрические преобразования можно поменять местами, но это возможно далеко не всегда! Поэтому «чайникам» лучше придерживаться алгоритма, изложенного в начале параграфа.

Весь материал статьи, который носит в бОльшей степени всё-таки справочный характер, потребуется для выполнения чертежей в других задачах, но время от времени на практике рассматриваемое задание встречается отдельно, причём, бывает, в «сыром» виде:

Пример 20

Построить график функции  с помощью преобразований графиков элементарных функций

Методику быстрого построения параболы я разобрал на первом уроке о графиках функций, однако здесь по условию необходимо применить вполне определённый способ.

На первом шаге представим функцию в виде . Для этого используем так называемый метод выделения полного квадрата. Советую не пренебрегать задачей, поскольку типовой приём потребуется и в будущем, например, при нахождении интегралов от некоторых дробей.

Идея состоит в том, чтобы искусственно преобразовать функцию ТАК, чтобы воспользоваться одной из формул сокращенного умножения  либо .

Начнём преобразования. Коэффициент при  выносим за скобку:
Очевидно, что выражение сведётся к формуле . В скобках конструируем :
Таким образом, . Теперь организуем , для этого в скобках прибавим и вычтем :
Последнее слагаемое выносим из скобок:
Используем формулу  и суммируем два последних слагаемых:

В целях проверки целесообразно раскрыть скобки и убедиться, что получится исходная функция:

Построим график . Параболу :

1) Сдвинем вдоль оси  на  влево:  (синий цвет);
2) Вытянем вдоль оси  в 2 раза:  (малиновый цвет);
3) Сдвинем вдоль оси  на  вверх:  (красный цвет):

Рассмотрим ещё один типовой трюк:

Пример 21

Построить график функции  с помощью преобразований графиков элементарных функций.

Сначала сведём функцию к виду . Все действия я закомментирую:

(1) В знаменателе выносим –1 за скобки. Это необходимо, чтобы аргумент функции представить «в привычном» порядке .
(2) Минус знаменателя поставим перед дробью. В числителе проведём искусственное преобразование – прибавим и вычтем единицу. Это необходимо для почленного деления на следующем шаге.
(3) Почленно делим числитель на знаменатель. Возьмите на заметку рассмотренный приём, он используется при интегрировании дробей.
(4) Раскрываем скобки.

Проведём построение. График гиперболы  (чёрный цвет):

1) Сдвинем вправо на 1 единицу:  (синий цвет);
2) Отобразим симметрично относительно оси абсцисс:  (малиновый цвет);
3) Сдвинем вдоль оси  на единицу вниз:  (красный цвет):

Перейдём к заключительной части урока, в которой речь пойдёт о модуле. Хотел её сделать отдельной небольшой страничкой или pdf-кой, да потом передумал, чего уж тут мелочиться. Хотя эта статья далеко не рекордная по количеству букв, солидную часть объема занимают чертежи.

Гипербола и обратная пропорциональность

Ранее мы уже строили графики . Однако мы рассматривали только случаи, при которых показателем в степени являлось натуральное число. Теперь же изучим функцию у = х– 1. Напомним, что по определению отрицательной степени

Найдем область определения функции у = 1/х. Ясно, что аргумент не может равняться нулю, так как иначе получим деление на ноль:

у(0) = 1:0

При любых других значениях х значение у вычислить можно, а потому областью определения будет промежуток (– ∞; 0)⋃(0;+ ∞).

При положительных значениях аргумента ф-ция также будет положительной:

у(5) = 1:5 = 0,2

у(2) = 1:2 = 0,5

у(10) = 1:10 = 0,1

При отрицательных х величина у будет становиться отрицательной:

у(– 5) = 1:(– 5) = – 0,2

у(– 2) = 1:(– 2) = – 0,5

у(– 10) = 1:(– 10) = – 0,1

Это означает, что график ф-ции будет располагаться в I и III четвертях.

Можно заметить, что чем больше х, тем ближе у к нулю:

у(1) = 1

у(10) = 0,1

у(100) = 0,01

И наоборот, чем ближе х к нулю, тем больше у:

у(0,1) = 1:0,1 = 10

у(0,01) = 100

у (0,001) = 1000

При этом у не может равняться нулю. Действительно, дробь равна нулю только тогда, когда ее числитель равен нулю. Однако варьируя х, мы меняем только знаменатель, а в числителе остается единица. Поэтому областью значений функции у = х– 1 является промежуток (– ∞; 0)⋃(0;+ ∞).

Для построения графика найдем некоторые точки графика и занесем их в таблицу. Мы построим две таблицы – одну для положительных х, другую для отрицательных:

Теперь можно посмотреть и на сам график:

Первое, что бросается в глаза – это то, что график не представляет собой единую, непрерывную линию. Он разбит на две ветви, одна из которых располагается в III четверти, а другая – в I четверти. Такой «разрыв» связан с тем, что ноль не входит в область определения ф-ции.

Также можно заметить симметричность графика. Действительно, одна из ветвей является симметричным отображением второй ветви.

Построенный нами график называется гиперболой.

На координатной плоскости есть две прямые линии, к которым гипербола приближается, но при этом он не касается их. Это оси Ох и Оу. Для наглядности покажем их штриховой линией:

В математике подобные линии называют асимптотами функции. Горизонтальная асимптота прямая соответствует линии х = 0, а вертикальная асимптота линии у = 0.

Зная, как выглядит график у = 1/х, мы можем построить и другие, схожие с ним графики для ф-ций у = k/х, где k– это некоторое число. Их можно получить из гиперболы, используя сжатие и растяжение графиков. Если коэффициент k больше единицы, то график «отдаляется» от осей Ох и Оу:

Все эти линии являются примерами гипербол. Если коэффициент k отрицательный, то графики переворачиваются относительно оси Ох и занимают II и IV четверти:

Все приведенные зависимости вида у = k/х называют обратными пропорциональностями.

Примерами обратной пропорциональности являются ф-ции:

Обратная пропорциональность очень часто встречается в жизни. Так, время, затрачиваемое на поездку на автомобиле, обратно пропорционально средней скорости движения. Количество товара, которое можно купить на одну зарплату, обратно пропорционально стоимости этого товара.

Графики функций с модулем

Для качественного усвоения материала необходимо понимать, что такое модуль. Краткую информацию о нём можно найти на странице Математические формулы и таблицы в справочном материале Горячие формулы школьного курса математики.

Применение модуля тоже представляет собой геометрическое преобразование графика. Не буду создавать сверхподробный мануал, отмечу только те моменты, которые, с моей точки зрения, реально пригодятся для решения других задач по вышке.

Сначала посмотрим, что происходит, когда модуль применяется к АРГУМЕНТУ функции.

Правило: график функции  получается из графика функции  следующим образом: при  график функции  сохраняется, а при  «сохранённая часть» отображается симметрично относительно оси .

Пример 22

Построить график функции

И снова вечная картина:
Согласно правилу, при  график сохраняется:
И сохранившаяся часть отображается симметрично относительно оси   в левую полуплоскость:

Действительно, функция  – чётная, и её график симметричен относительно оси ординат. Поясню детальнее смысл симметрии. Посмотрим на два противоположных значения аргумента, например, на  и . А какая разница? Модуль всё равно уничтожит знак «минус»: , то есть значения функции будут располагаться на одной высоте.

Функцию от модуля можно расписать в так называемом кусочном виде по следующему правилу: . В данном случае:

То есть, правая волна графика  задаётся функцией , а левая волна – функцией  (см. Пример 13).

Пример 23

Построить график функции

Аналогично, ветвь «обычной» экспоненты  правой полуплоскости отображаем симметрично относительно оси  в левую полуплоскость:
Распишем функцию в кусочном виде: , то есть правая ветвь задаётся графиком функции , а левая ветвь графиком .

Модуль не имеет смысл «навешивать» на аргумент чётной функции:  и т.п. (проанализируйте, почему).

И, наконец, завершим статью весёлой нотой – применим модуль к САМОЙ ФУНКЦИИ.

Правило: график функции  получается из графика функции  следующим образом: часть графика , лежащая НАД осью  сохраняется, а часть графика , лежащая ПОД осью  отображается симметрично относительно данной оси.

Странно, что широко известный график модуля «икс» оказался на 24-й позиции, но факт остаётся фактом =)

Пример 24

Построить график функции

Сначала начертим прямую, известную широкому кругу лиц:
Часть графика, которая ВЫШЕ оси , остаётся неизменной, а часть графика, которая НИЖЕ оси  – отображается симметрично в верхнюю полуплоскость:

Модуль функции также раскрывается аналитически в кусочном виде:

Внимание! Формула отличается от формулы предыдущего пункта!

В данном случае: , действительно, правый луч задаётся уравнением , а левый луч – уравнением .

Кстати,  – редкий экземпляр, когда можно считать, что модуль применён, как к аргументу: , так и  к самой функции: . Изучим более «жизненную» ситуацию:

Пример 25

Построить график функции

Сначала изобразим график линейной функции :
То, что ВЫШЕ оси абсцисс – не трогаем, а то, что НИЖЕ – отобразим симметрично относительно оси  в верхнюю полуплоскость:

Согласно формуле , распишем функцию аналитически в кусочном виде: .

Или, упрощая оба этажа: , то есть правый луч задаётся функцией , а левый луч – функцией . Сомневающиеся могут взять несколько значений «икс», выполнить подстановку и свериться с графиком.

На какие функции модуль «не действует»? Модуль бессмысленно применять к неотрицательным функциям. Например: . Экспоненциальная функция и так полностью лежит в верхней полуплоскости: .

Всё возвращается на круги своя, синусом начали, синусом и закончим. Как в старой доброй сказке:

Пример 26

Построить график функции .

Изобразим сами знаете что =)

И снова – то, что находиться в верхней полуплоскости – оставим в покое, а содержимое подвала – отобразим симметрично относительно оси :

Кстати, понятен ли вам неформальный смысл такого симметричного отображения? Модуль «съедает» у  отрицательных чисел знак и делает их положительными, именно поэтому «подвальные» точки занимают противоположные места в верхней полуплоскости.

Распишем функцию в кусочном виде:

Решив два простейших школьных неравенства , получаем:, где  – любое целое число.

Да, статья была не самой приятной, но крайне необходимой. Однако повествование завершилось и стало немножко грустно =) Чем-то напомнило мне всё это урок про метод Симпсона, который тоже создавался в марте, и тоже достаточно долгое время. Наверное, громоздкие вещи пишутся по сезону =)

Желаю успехов!

(Переход на главную страницу)

Как работает графический калькулятор для графиков функций?

Онлайн сервис работает очень просто. В поле на самом верху вписывается функция (т.е. само уравнение, график которого необходимо построить). Сразу после ввода приложение моментально рисует график в области под этим полем. Все происходит без обновления страницы. Далее, можно внести различные цветовые настройки, а также скрыть/показать некоторые элементы графика функции. После этого, готовый график можно скачать, нажав на соответствующую кнопку в самом низу приложения. На ваш компьютер будет загружен рисунок в формате .png, который вы сможете распечатать или перенести в бумажную тетрадь.

Свойства линейной функции

  1. Область определения функции — множество всех действительных чисел.

  2. Множеством значений функции является множество всех действительных чисел.

  3. График линейной функции — прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b.

  4. Функция не имеет ни наибольшего, ни наименьшего значений.

  5. Четность и нечетность линейной функции зависят от значений коэффициентов k и b:

    b ≠ 0, k = 0, значит, y = b — четная;

    b = 0, k ≠ 0, значит, y = kx — нечетная;

    b ≠ 0, k ≠ 0, значит, y = kx + b — функция общего вида;

    b = 0, k = 0, значит, y = 0— как четная, так и нечетная функция.

  6. Свойством периодичности линейная функция не обладает, потому что ее спектр непрерывен.

  7. График функции пересекает оси координат:

    ось абсцисс ОХ — в точке (−b/k; 0);

    ось ординат OY — в точке (0; b).

  8. x = −b/k — является нулем функции.

  9. Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х.

    Если b ≠ 0 и k = 0, то функция y = b не обращается в нуль ни при каких значениях переменной х.

  10. Функция монотонно возрастает на области определения при k > 0 и монотонно убывает при k < 0.

  11. При k > 0 функция принимает отрицательные значения на промежутке (−∞; −b/k) и положительные значения на промежутке (−b/k; +∞).

    При k < 0 функция принимает отрицательные значения на промежутке (−b/k; +∞) и положительные значения на промежутке (−∞; −b/k).

  12. Коэффициент k характеризует угол, который образует прямая с положительным направлением OX. Поэтому k называют угловым коэффициентом.

    Если k > 0, то этот угол острый, если k < 0 — тупой, если k = 0, то прямая совпадает с осью OX.

Есть два частных случая линейной функции:

Если b = 0, то уравнение примет вид y = kx. Такая функция называется прямой пропорциональностью. График — прямая, которая проходит через начало координат.

Если k = 0, то уравнение примет вид y = b. График — прямая, которая параллельна оси OX и проходит через точку (0; b).

Бесплатные занятия по английскому с носителем
Занимайтесь по 15 минут в день. Осваивайте английскую грамматику и лексику. Сделайте язык частью жизни.
Записаться на интенсив

Построение графиков других функций

Теперь, когда у нас есть основа в виде таблицы и диаграммы, можно строить графики других функций, внося небольшие корректировки в нашу таблицу.

Квадратичная функция  y=ax2+bx+c

Выполните следующие действия:

  • В первой строке меняем заголовок
  • В третьей строке указываем коэффициенты и их значения
  • В ячейку A6 записываем обозначение функции
  • В ячейку B6 вписываем формулу =$B3*B5*B5+$D3*B5+$F3
  • Копируем её на весь диапазон значений аргумента вправо

Получаем результат

График квадратичной функции

Кубическая парабола  y=ax3

Для построения выполните следующие действия:

  • В первой строке меняем заголовок
  • В третьей строке указываем коэффициенты и их значения
  • В ячейку A6 записываем обозначение функции
  • В ячейку B6 вписываем формулу =$B3*B5*B5*B5
  • Копируем её на весь диапазон значений аргумента вправо

Получаем результат

График кубической параболы

Гипербола  y=k/x

Для построения гиперболы заполните таблицу вручную (смотри рисунок ниже). Там где раньше было нулевое значение аргумента оставляем пустую ячейку.

Далее выполните действия:

  • В первой строке меняем заголовок.
  • В третьей строке указываем коэффициенты и их значения.
  • В ячейку A6 записываем обозначение функции.
  • В ячейку B6 вписываем формулу =$B3/B5
  • Копируем её на весь диапазон значений аргумента вправо.
  • Удаляем формулу из ячейки I6.

Для корректного отображения графика нужно поменять для диаграммы диапазон исходных данных, так как в этом примере он больше чем в предыдущих.

  • Кликните диаграмму
  • На вкладке Работа с диаграммами перейдите в Конструктор и в разделе Данные нажмите Выбрать данные.
  • Откроется окно мастера ввода данных
  • Выделите мышкой прямоугольный диапазон ячеек A5:P6
  • Нажмите ОК в окне мастера.

Получаем результат

График гиперболы

Построение тригонометрических функций sin(x) и cos(x)

Рассмотрим пример построения графика тригонометрической функции y=a*sin(b*x). Сначала заполните таблицу как на рисунке ниже

Таблица значений функции sin(x)

В первой строке записано название тригонометрической функции. В третьей строке прописаны коэффициенты и их значения

Обратите внимание на ячейки, в которые вписаны значения коэффициентов. В пятой строке таблицы прописываются значения углов в радианах

Эти значения будут использоваться для подписей на графике. В шестой строке записаны числовые значения углов в радианах. Их можно прописать вручную или используя формулы соответствующего вида =-2*ПИ(); =-3/2*ПИ(); =-ПИ(); =-ПИ()/2; … В седьмой строке записываются расчетные формулы тригонометрической функции.

Запись расчетной формулы функции sin(x) в Excel

В нашем примере =$B$3*SIN($D$3*B6). Адреса B3 и D3 являются абсолютными. Их значения – коэффициенты a и b, которые по умолчанию устанавливаются равными единице. После заполнения таблицы приступаем к построению графика.

Выделяем диапазон ячеек А6:J7. В ленте выбираем вкладку Вставка в разделе Диаграммы указываем тип Точечная и вид Точечная с гладкими кривыми и маркерами. 

Построение диаграммы Точечная с гладкими кривыми

В итоге получим диаграмму.

График sin(x) после вставки диаграммы

Теперь настроим правильное отображение сетки, так чтобы точки графика лежали на пересечении линий сетки. Выполните последовательность действий Работа с диаграммами –Конструктор – Добавить элемент диаграммы – Сетка и включите три режима отображения линий как на рисунке.

Настройка сетки при построении графика

Теперь зайдите в пункт Дополнительные параметры линий сетки. У вас появится боковая панель Формат области построения. Произведем настройки здесь.

Кликните в диаграмме на главную вертикальную ось Y (должна выделится рамкой). В боковой панели настройте формат оси как на рисунке.

Кликните главную горизонтальную ось Х (должна выделится) и также произведите настройки согласно рисунку.

Настройка формата горизонтальной оси Х графика функции

Теперь сделаем подписи данных над точками. Снова выполняем Работа с диаграммами –Конструктор – Добавить элемент диаграммы – Подписи данных – Сверху. У вас подставятся значения числами 1 и 0, но мы заменим их значениями из диапазона B5:J5. Кликните на любом значении 1 или 0 (рисунок шаг 1) и в параметрах подписи поставьте галочку Значения из ячеек (рисунок шаг 2). Вам будет сразу же предложено указать диапазон с новыми значениями (рисунок шаг 3). Указываем B5:J5.

Вот и все. Если сделали правильно, то и график будет замечательным. Вот такой.

Аналогичным способом можно строить графики других функций. Главное правильно записать вычислительные формулы и построить таблицу значений функции. Надеюсь, что вам была полезна данная информация.

Построение графиков функций у=f(х+a)

Теперь рассмотрим, как можно получить график функции y=(x+3)2, используя график функции y=x2.

Возьмем произвольную точку с координатами (x; y), которая находится на графике функции y=x2, то есть x2=y. Приведем доказательства того, что точка (x–3; y) находится на графике функции y=(x+3)2. Вычислим значение y в точке при x–3. Получим y=((x–3)+3)2=x2. Таким образом, любой точке (x; y) на графике функции y=x2 соответствует только одна точка (x–3; y) на графике функции y=(x+3)2. Подобным образом доказывается, что любой точке (x1; y1) на графике функции y=(x+3)2 соответствует только одна точка (x1+3; y1) на графике функции y=x2.

Значит, путем замены всех точек графика функции y=x2 на точки, у которых ординаты те же, а абсциссы уменьшены на число 3, получим все точки графика функции y=(x+3)2 (рисунок 5).

Рисунок 5 – Графики функций y=x2 и y=(x+3)2

Таким образом, график функции y=(x+3)2 был построен путем параллельного переноса графика функции y=x2 вдоль оси абсцисс на 3 единицы влево.

Аналогично можно получить график функции y=(x–3)2, используя график функции y=x2. Так как любой точке (x; y) на графике функции y=x2 соответствует только одна точка (x+3; y) на графике функции y=(x–3)2 и любой точке (x1; y1) на графике функции y=(x–3)2 соответствует только одна точка (x1–3; y1) на графике функции y=x2. Следовательно, график функции y=(x–3)2 строят путем параллельного переноса графика функции y=x2 вдоль оси абсцисс на 3 единицы вправо (рисунок 6).

Рисунок 6 – Графики функций y=x2 и y=(x–3)2

Следуя такому алгоритму, можно построить график функции у=f(x+a) с помощью графика функции у=f(x). Отсюда следует правило.

График функции у=f(x+a) можно построить с помощью параллельного переноса графика функции у=f(x) на a единиц влево при a>0 и на -a единиц вправо при a<0.

Для подтверждения работы правила на рисунках 7, 8 приведем изображения графиков функций

Рисунок 7 – Графики функций y=√x и y=√(x–2)

Рисунок 8 – Графики функций y=1/x и y=1/x+2

Очевидно, что фигуры графиков функций y=(x+3)2, y=(x–3)2 – это параболы, которые равны параболе y=x2.

Задание 1. Построить график функции y=(x+2)2–4.

Для решения задания будем следовать такому алгоритму:

  1. Строим график функции y=x2;
  2. Делаем параллельный перенос построенного графика вдоль оси абсцисс влево на 2 единицы. Получаем график функции y=(x+2)2;
  3. Делаем параллельный перенос второго построенного графика вдоль оси ординат вниз на 4 единицы. Получаем график функции y=(x+2)2–4.

Все действия согласно приведенному алгоритму проиллюстрируем на рисунке 9.

Рисунок 9 – Построение графика функции y=(x+2)2–4

Построение графика функции y=(x+2)2–4 для наглядности можно схематично показать так:

Задание 2. Построить график функции y=0,5(x–1)2+2.

Алгоритм:

  1. Строим график функции y=0,5×2;
  2. Делаем параллельный перенос построенного графика вдоль оси абсцисс вправо на 1 единицу. Получаем график функции y=0,5(x–1)2;
  3. Делаем параллельный перенос второго построенного графика вдоль оси ординат вверх на 2 единицы. Получаем график функции y=0,5(x–1)2+2.

Все действия согласно приведенному алгоритму проиллюстрируем на рисунке 10.

Рисунок 10 – Построение графика функции y=0,5(x–1)2+2

Схема для построения графика функции y=0,5(x–1)2+2:

Решение задание 2 показывает порядок получения графика функции y=kf(x+a)+b, конкретно графика функции y=k(x+a)2+b. Отсюда можно сделать следующий вывод.

График функции y=k(x+a)2+b при k≠0 – это парабола, которая равна y=kx2+b с вершиной в точке с координатами (-a; b).

Задание 3. Построить график функции y=-3×2+24x–50.

Преобразуем заданное выражение:

y=-3×2+24x–50=-3×2+24x–48–2=-3(x–4)2–2.

В итоге получаем формулу, которая задает исходную функцию в виде y=kf(x+a)+b, где k=-3, f(x)=x2, a=-4; b=-2.

Схема для построения графика функции y=-3×2+24x–50:

Искомый график – это парабола с вершиной в точке с координатами (4; -2) равная параболе y=-3×2 (рисунок 11).

Рисунок 11 – Построение графика функции y=-3×2+24x–50

Растяжение (сжатие) графика ВДОЛЬ оси ординат.Симметричное отображение графика относительно оси абсцисс

Структура второй части статьи будет очень похожа.

1) Если ФУНКЦИЯ  умножается на число , то происходит растяжение её графика вдоль оси ординат.

Правило: чтобы построить график функции , где , нужно график функции  растянуть вдоль оси  в  раз.

2) Если ФУНКЦИЯ умножается на число , то происходит сжатие её графика вдоль оси ординат.

Правило: чтобы построить график функции , где , нужно график функции  сжать вдоль оси  в   раз.

Догадайтесь, какую функцию я буду снова пытать =)

Пример 11

Построить графики функций .

Берём синусоиду за макушку/пятки:
И вытягиваем её вдоль оси   в 2 раза:
Период функции  не изменился и составляет , а вот значения (все, кроме нулевых) увеличились по модулю в два раза, что логично – ведь функция умножается на 2, и область её значений удваивается: .

Теперь сожмём синусоиду вдоль оси   в 2 раза:
Аналогично, период  не изменился, но область значений функции «сплющилась» в два раза: .

Нет, у меня нет какого-то пристрастного отношения к синусоиде, просто я хотел продемонстрировать, чем отличаются графики функций  (Примеры № 1, 3) от только что построенных собратьев . Постарайтесь ещё раз проанализировать и качественнее понять эти элементарные случаи.  Даже минимальные знания о преобразованиях графиков окажут вам неоценимую помощь в ходе решения других задач высшей математики!

И, конечно же, классический пример растяжения/сжатия параболы:

Пример 12

Построить графики функций .

Возьмём рога молодого оленя  и вытянем их вверх вдоль оси  в два раза: . Затем сожмём  вдоль оси ординат в 2 раза:
И снова заметьте, что значения функции  увеличиваются в 2 раза, а значения  уменьшаются во столько же раз (исключение составляет точка ).

Отпустим в тундру удивлённое животное и продолжим изучать умножение функции на число: . Случаи  не представляют интереса, поэтому рассмотрим отрицательные коэффициенты. Сначала распространённый частный случай :

Если ФУНКЦИЯ меняет знак на противоположный, то её график отображается симметрично относительно оси абсцисс.

Правило: чтобы построить график функции , нужно график  отобразить симметрично относительно оси .

Пример 13

Построить график функции

Отобразим синусоиду симметрично относительно оси :

Ещё более наглядно симметрия просматривается у следующей типовой функции:

Пример 14

Построить график функции

График функции  получается путём симметричного отображения графика  относительно оси абсцисс:
Функции  задают две ветви параболы, которая «лежит на боку». Обратная функция  задаёт параболу целиком. С подобными графиками часто приходится иметь дело при нахождении площадей фигур, построении областей интегрирования двойных интегралов и в некоторых других задачах.

При умножении функции на отрицательное число , , построение графика следует выполнить в два этапа: сжатие (или растяжение) вдоль оси ординат, а потом – симметричное отображение относительно оси абсцисс. Конкретные примеры увидим в следующем топике.

Кусочная функция с разрывом

В рассмотренном выше примере функция не имела разрыва в граничной точке (то есть, значения при \(x=-1\) были одинаковы и слева, и справа). Но так бывает не всегда.
Например, у функции \(y=\begin{cases}x+1,& при & x<0\\-x^2+2x+3, & при & x≥0\end{cases}\) есть разрыв в точке \(0\), потому что значение кусочков этой функции в граничной точке \(0\) не совпадает:
при \(x=0\) в первом кусочке, \(y(0)=0+1=1\);
при \(x=0\) во втором кусочке \(y(0)=-0^2+2\cdot 0+3=3\).
На графике это выглядит так:

Заметьте, что \(x=0\) включен во вторую часть функции (ведь ее область «икс больше или равен нулю), но не включен в первую (так как там «строго меньше нуля»). Поэтому граничную точку параболы мы закрашиваем, а линейной — выкалываем.

Как построить графики кусочных функций?

Очень просто. Нужно каждый кусочек функции построить на выделенном для него участке, не залезая на соседние

При этом неважно каким именно способом строятся эти кусочки – можно с помощью элементарных преобразований, можно по точкам.

Пример. Построить график кусочной функции \(y=\begin{cases}-\frac{5}{x}, & x≤-1\\x^2-4x,& x>-1\end{cases}\)

Решение.

\(x\)

\(-1\)

\(-2\)

\(-5\)

\(y\)

\(5\)

\(2,5\)

\(1\)

Отметим их на координатной плоскости:

\(y=-\)\(\frac{5}{x}\) — гипербола, с учетом этого соединим полученные точки. Главное не перечертить график за граничную точку \((-1;5)\).

2) Построим вторую функцию на области \(x∈(-1;∞)\).
Для начала проверим «состыкуются» ли графики, для этого найдем значение функции \(y=x^2-4x\) в точке \(-1\):
\(y(-1)=(-1)^2-4\cdot(-1)=1+4=5\) – значение такое же, как в первой функции, значит графики состыкуются.

\(y=x^2-4x\) – квадратичная функция, график этой функции — парабола с ветвями вверх. Чтобы её построить найдем координаты вершины парабола:

\(x_в=\)\(\frac{-b}{2a};\)   \(x_в=\)\(\frac{4}{2}\)\(=2\)
\(y_в=2^2-4 \cdot 2=4-8=-4.\)

Отметим эту точку на графике и проведем через неё ось симметрии параболы.

Найдем значение в точке \(1\) и \(0\):
\(y(1)=1^2-4\cdot 1=1-4=-3\)
\(y(0)=0^2-4\cdot 0=0\)
Отметим точки \((1;-3)\), \((0;0)\) и симметричные им на координатной плоскости.

Соединим первый график и получившиеся точки в одну плавную линию.

Готово. График кусочной функции построен.

Как не должна выглядеть кусочная функция:

Здесь парабола заехала на территорию гиперболы, а гипербола заехала на территорию параболы, так быть не должно! У каждого кусочка – своя территория.

Сжатие (растяжение) графика к (от) оси ординат.Симметричное отображение графика относительно оси

Первая группа действий связана с умножением АРГУМЕНТА функции на число. Для удобства я разобью правило на несколько пунктов:

Сжатие графика функции к оси ординат

Это случай когда АРГУМЕНТ функции умножен на число, бОльшее единицы.

Правило: чтобы построить график функции , где , нужно график функции  сжать к оси  в  раз.

И первой на эшафот взойдёт функция, которой я недавно грозился:

Пример 1

Построить график функции .

Сначала изобразим график синуса, его период равен :
К слову, чертить графики тригонометрических функций вручную – занятие кропотливое, поскольку  и т.д., то есть на стандартной клетчатой бумаге аккуратным нужно быть вплоть до миллиметра, даже до полумиллиметра. Впрочем, многие с этим уже столкнулись.

Теперь поиграем на бесконечно длинном баяне. Мысленно возьмём синусоиду в руки и сожмём её к оси  в 2 раза:
То есть, график функции  получается путём сжатия графика  к оси ординат в два раза. Логично, что период итоговой функции тоже уполовинился:

В целях самоконтроля можно взять 2-3 значения «икс» и устно либо на черновике выполнить подстановку:
Смотрим на чертёж, и видим, что это действительно так.

Аналогичную блиц-проверку полезно осуществлять в любом другом примере! Более того, она лучше поможет усвоить суть того или иного преобразования.

Пример 2

Построить график функции

«Чёрная гармошка»  сжимается к оси  в 3 раза:
Итоговый график  проведён красным цветом.
Исходный период  косинуса закономерно уменьшается в три раза:  (отграничен жёлтыми точками).

Растяжение графика функции от оси ординат

Это противоположное действие, теперь баян не сжимается, а растягивается.
Случай имеет место, когда АРГУМЕНТ функции умножается на число .

Правило: чтобы построить график функции , где , нужно график функции  растянуть от оси  в  раз.

Продолжим мучить синус:

Пример 3

Построить график функции

Берём в руки нашу «бесконечную гармошку»:

И растягиваем её от оси  в 2 раза:

То есть, график функции  получается путём растяжения графика  от оси ординат в два раза. Период итоговой функции увеличивается в 2 раза: , он толком даже не вместился на данный чертёж.

Операции сжатия/растяжения графиков, разумеется, выполнимы не только для тригонометрических функций:

Пример 4

Построить графики функций

График функции  получается путём сжатия графика экспоненты  к оси  в два раза. А график  – путём растяжения графика экспоненты  от оси  в два раза:

В качестве ассоциации можете опять поиграть на «баяне» .

Продолжаем систематизировать  умножение аргумента функции на число:
Мы рассмотрели два случая – сжатие () и растяжение ().

Очевидно, что нет практического смысла рассматривать значения . Есть более интересный вопрос: что происходит, когда аргумент умножается на отрицательное число? Ответ будет получен чуть позже, а пока рассмотрим распространённый частный случай, когда :

Симметричное отображение графика функции относительно оси ординат

АРГУМЕНТ функции меняет знак.

Правило: чтобы построить график функции , нужно график  отобразить симметрично относительно оси .

Наглядный пример уже встречался на уроке Графики и свойства элементарных функций (вспоминаем ). Распечатаем ещё один комплект:

Пример 5

Построить график функции

График функции  получается путём симметричного отображения графика  относительно оси ординат:


Как видите, всё просто.

Если при умножении аргумента на число  значение параметра  отрицательно и не равно минус единице, то построение выполняется в два шага. Например: . На первом шаге выполняем сжатие графика  к оси ординат в 2 раза: . На втором шаге график  отображаем симметрично относительно оси ординат: . Конкретный пример обязательно рассмотрим ниже.

А следующий параграф посвящается одному интересному человеку из дворовой компании моего далёкого детства. Он вытягивал руки в стороны, открывал рот и прыгал влево/вправо по проезжей части. Водители крутили виском у пальца, сигналили, но догнать его так никто и не смог.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Курс на развитие
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: