Раскрытие скобок: правила, примеры, решения

Скобки для обозначения числовых промежутков

Для того, чтобы изобразить числовые промежутки применяют скобки четырех видов: ( ) , ( ] , . В скобках прописываются промежутки, в каких функция существует, то есть имеет решение. Круглая скобка означает, что число не входит в область определения, квадратная – входит. При наличии бесконечности принято изображать круглую скобку.

То есть при изображении промежутков получим, что ( 0 , 5 ) , , ( − ∞ , − 4 ] , ( − 3 , + ∞ ) , ( − ∞ , + ∞ ) . Не вся литература одинаково использует скобки. Есть случаи, когда можно увидеть запись такого вида ] 0 , 1 [ , что означает ( 0 , 1 ) или [ 0 , 1 [ , что значит [ 0 , 1 ) , причем смысл выражения не меняется.

Ответы@Mail.Ru: люди научите. раскрывать скобки

ну это математика как я поняла.
например
4+(7-2)+6 -(1+4) -2(3+4)+2(1+1)
т. е. если перед скобками стоит +, то знаки остаются прежними
при их раскрытии
(раскрывать скобки значит убирать их)
вот, получается так
4+7-2+6 -(1+4) -2(3+4)+2(1+1)
если перед скобками знак _, то знаки меняются
например -(2+1) то получится -2-1, т. е 2 было с + стало с — то же самое с единицой
все вместе вот так
4+7-2+6 -1-4 -2(3+4)+2(1+1)
если перед скобками стоит знак умножить на какое -либо число, то опять же нужно смотреть на знак и уже перемножать число за скобками на каждое из чиселл в скобках
например
2(4+1)
перд скобками знак + следовательно
2*4+2*1=8+2
мы раскрыли скобки
с — тоже самое
только вот так
-2(4+1)
-8-2
или еще пример
-3(2-1)=-6 + 3
т. к. в скобках 3 с минусом и еденица с минусом то — на — дает +
все вместе вот так
4+7-2+6 -1-4 -6 -8+2+2
И РЕШАЕШЬ ТЕПРЬ КАК ОБЫЧНО
если вот так
(2+1)(3-2)
то будет так
сначала
2 перемножаешь, а потом 1 на то что в скобках, между результатами знак +
т. е.
получится так
2(3-2) + 1(3-2)
ну еденица не пишется
2(3-2) + (3-2)
и дальше так как в примере выше
2*3 -2*2 + 3-2
6-4+1
3

A+(B+C)=A+B+C (и главное =(A+B)+C для A,B,C є R, читайте понятие ассоциативности суммирования)
A-(B+C)=A-B-C
A-(B-C)=A-B+C
ну и т. д. до бесконечности (но основная суть — при минусе перед скобкой инвертируем все ЗНАКИ (умножение/деление — операция, никак не знак

Это важно) слагаемых внутри скобок)

Левой рукой на Shift а правой на девятку. не отпуская Shift

очень просто нужно (!!!только если перед скобкой знак минус) при раскрытии скобок менять знак! например вот:
7-(6-7+3+8)=7-6+7-3-8
а если так:
7+(6-7+3+8)=7+6-7+3+8
Вот и всё)

Когда хочешь раскрыть скобки, знак меняй на противоположный (плюс на минус и наоборот) вот и вся наука.

запросто… берём ластик и стираем скобки…)) ) шутка. вот примерчик бы. на чем обьяснить то.. . а лучшеб лично. тут писать долго.

Раскрытие скобок
Выражение а+(в+с) можно записать без скобок а+в+с. Это уперацию называют РАСКРЫТИЕМ СКОБОК.
Пример 1.Раскроем скобки в выражении а+(-в+с) =а+((-в) +с) =а+(-в) +с=а-в+с
ЕСЛИ ПЕРЕД СКОБКАМИ СТОИТ ЗНАК +,ТО МОЖНО ОПУСТИТЬ СКОБКИ И ЭТОТ ЗНАК +,СОХРАНИВ ЗНАКИ СЛАГАЕМЫХ, СОСТОЯЩИХ В СКОБКАХ. ЕСЛИ ПЕРВОЕ СЛАГАЕМОЕ В СКОБКАХ ЗАПИСАНО БЕЗ ЗНАКА, ТО ЕГО НАДО ЗАПИСАТЬ СО ЗНАКОМ +
Пример 2.
-2,87+(2,87-7,639)=-2,87+2,87-7,639=0-7,639=-7,639
ЧТОБЫ РАСКРЫТЬ СКОБКИ, ПЕРЕД КОТОРЫМИ СТОИТ ЗНАК -,НАДО ЗАМЕНИТЬ ЭТОТ ЗНАК НА +,ПОМЕНЯВ ЗНАКИ ВСЕХ СЛАГАЕМЫХ В СКОБКАХ НА ПРОТИВОПОЛОЖНЫЕ, А ПОТОМ РАСКРЫТЬ СКОБКИ.

a+(b+c)=a+b+c
Если стоит знак плюс то мы не меняем знаки слагаемых. Если у слагаемого нет знака то мы ставим плюс (если перед ним стоит знак).
a-(-b+c)=a-b-c
Если стоит отрицательный знак то знаки слагаемых меняются на противоположный зависит от знака если плюс то минус если минус то плюс.

ну это математика как я поняла.
например
4+(7-2)+6 -(1+4) -2(3+4)+2(1+1)
т. е. если перед скобками стоит +, то знаки остаются прежними
при их раскрытии
(раскрывать скобки значит убирать их)
вот, получается так
4+7-2+6 -(1+4) -2(3+4)+2(1+1)
если перед скобками знак _, то знаки меняются
например -(2+1) то получится -2-1, т. е 2 было с + стало с — то же самое с единицой
все вместе вот так
4+7-2+6 -1-4 -2(3+4)+2(1+1)
если перед скобками стоит знак умножить на какое -либо число, то опять же нужно смотреть на знак и уже перемножать число за скобками на каждое из чиселл в скобках
например
2(4+1)
перд скобками знак + следовательно
2*4+2*1=8+2
мы раскрыли скобки
с — тоже самое
только вот так
-2(4+1)
-8-2
или еще пример
-3(2-1)=-6 + 3
т. к. в скобках 3 с минусом и еденица с минусом то — на — дает +
все вместе вот так
4+7-2+6 -1-4 -6 -8+2+2
И РЕШАЕШЬ ТЕПРЬ КАК ОБЫЧНО
если вот так
(2+1)(3-2)
то будет так
сначала
2 перемножаешь, а потом 1 на то что в скобках, между результатами знак +
т. е.
получится так
2(3-2) + 1(3-2)
ну еденица не пишется
2(3-2) + (3-2)
и дальше так как в примере выше
2*3 -2*2 + 3-2
6-4+1
3

ЕСЛИ ПЕРЕД СКОБКАМИ СТОИТ ЗНАК +,ТО МОЖНО ОПУСТИТЬ СКОБКИ И ЭТОТ ЗНАК +,СОХРАНИВ ЗНАКИ СЛАГАЕМЫХ, СОСТОЯЩИХ В СКОБКАХ. ЕСЛИ ПЕРВОЕ СЛАГАЕМОЕ В СКОБКАХ ЗАПИСАНО БЕЗ ЗНАКА, ТО ЕГО НАДО ЗАПИСАТЬ СО ЗНАКОМ +
ЧТОБЫ РАСКРЫТЬ СКОБКИ, ПЕРЕД КОТОРЫМИ СТОИТ ЗНАК -,НАДО ЗАМЕНИТЬ ЭТОТ ЗНАК НА +,ПОМЕНЯВ ЗНАКИ ВСЕХ СЛАГАЕМЫХ В СКОБКАХ НА ПРОТИВОПОЛОЖНЫЕ, А ПОТОМ РАСКРЫТЬ СКОБКИ.

а что со знаком будет если скобка в квадрате?

если скобка в квадрате то каждое число в скобке будет в квадрате

я ниче непонял (((((((

Квадратные скобки [ править | править код ]

В лингвистике употребительны для обозначения транскрипции в фонетике или границ составляющих в синтаксисе.

Квадратными скобками в цитатах задают авторский текст, который проясняет контекст цитаты. Например, «Их было около 100 человек». В библиографических записях, описаниях и ссылках квадратными скобками отмечают содержание полей, сформулированных составителем записи на основе анализа документа, а также заимствованных им из источников вне документа; например: « Иванов, И. И. Численные методы : учеб. пособие / И. И. Иванов ; . — М. : Физматлит , 1995. — 313, с.»

Квадратными скобками в математике могут обозначаться:

  • Операция взятия целой части числа. Эта нотация была введена Гауссом в его третьем доказательстве квадратичного закона взаимности в 1808 году . Также используется как округление до ближайшего целого. [источник не указан 294 дня]
  • Для задания приоритета операций (аналогично круглым) в качестве скобок «второго уровня» — так легче различать вложенность скобок, например: 2 <displaystyle ^<2>>.
  • Векторное произведение векторов: c = = = a × b <displaystyle mathbf ==[mathbf imes mathbf ]=mathbf imes mathbf >.
  • Закрытые сегменты; запись <displaystyle >означает, что в множество включены числа 1 ≤ x ≤ 3 <displaystyle 1leq xleq 3>. В этом случае не соблюдается правило парности скобок, например, закрытый слева и открытый справа сегмент может быть обозначен как [ x , y [ <displaystyle [x,y[>или [ x , y ) <displaystyle [x,y)>.
  • Коммутатор ≡ − ≡ A B − B A <displaystyle equiv _<->equiv AB-BA>и антикоммутатор + ≡ A B + B A , <displaystyle _<+>equiv AB+BA,,>хотя для последнего иногда используют фигурные скобки без нижнего индекса.
  • Квадратными (реже фигурными) скобками обозначается оператор специального вида, называемый скобками Пуассона: . <displaystyle ,.>
  • Квадратные скобки могут использоваться как альтернатива круглым скобкам при записи матриц и векторов.
  • Одинарная квадратная скобка объединяет совокупность уравнений или неравенств (чтобы совокупность выполнялась, достаточно, чтобы выполнялось любое из условий, то есть это вертикальная форма оператора «или»); например, [ x ≤ 10 x ≥ 10 <displaystyle left[<eginxleq 10\xgeq 10end>
    ight.>обозначает, что x ∈ ( − ∞ ; + ∞ ) <displaystyle xin (-infty ;+infty )>.
  • Нотация Айверсона.

В математике помимо обычных квадратных скобок используются также их модификации «пол» ⌊ x ⌋ <displaystyle lfloor x
floor > и «потолок» ⌈ x ⌉ <displaystyle lceil x
ceil > для обозначения ближайшего целого, не превосходящего x <displaystyle x> , и ближайшего целого, не меньшего x <displaystyle x> , соответственно.

В химии квадратными скобками обозначают комплексные анионы и катионы, например: Na2[Fe(NO)(CN)5], [Ag(NH3)2] + . Кроме того, по номенклатуре IUPAC в квадратные скобки заключается количество атомов в мостиках между двумя атомами в названии органических полициклических соединений, например: бициклооктан.

В вики-разметке двойные квадратные скобки используются для внутренних ссылок, перенаправлений, категорий и интервики, одинарные — для внешних.

В программировании чаще всего применяются для указания индекса элемента массива, в языке Perl также формируют ссылку на безымянный массив; в Бейсике и некоторых других достаточно старых языках не используются.

В стандарте POSIX определена утилита test, синонимом которой является символ квадратной скобки «[».

Часто квадратные скобки используются для обозначения необязательности, например, параметров командной строки (см. подробнее в статье Форма Бэкуса — Наура).

Скобки в выражениях со степенями

Выражение со степенью не всегда следует заключать в скобки, так как степень располагается надстрочно. Если имеется запись вида 2 x + 3 , то очевидно, что х + 3 – это показатель степени. Когда степень записывается в виде знака ^, тогда остальное выражение следует записывать с добавлением скобок, то есть 2 ^ ( x + 3 ) . Если записать это же выражение без скобок, то получится совсем другое выражение. При 2 ^ x + 3 на выходе получим 2 x + 3 .

Основание степени не нуждается в скобках. Поэтому запись принимает вид 0 3 , 5 x 2 + 5 , y 0 , 5 . Если в основании имеется дробное число, тогда можно использовать круглые скобки. Получаем выражения вида ( 0 , 75 ) 2 , 2 2 3 32 + 1 , ( 3 · x + 2 · y ) — 3 , log 2 x — 2 — 1 2 x — 1 .

Если выражение основания степени не взять в скобки, тогда показатель может относиться ко всему выражению, что повлечет за собой неправильное решение. Когда имеется выражение вида x 2 + y , а — 2 – это его степень, то запись примет вид ( x 2 + y ) — 2 . При отсутствии скобок выражение приняло бы вид x 2 + y — 2 , что является совершенно другим выражением.

Если основанием степени является логарифм или тригонометрическая функция с целым показателем, тогда запись приобретает вид sin , cos , t g , c t g , a r c sin , a r c cos , a r c t g , a r c c t g , log , ln или l g . При записи выражения вида sin 2 x , a r c cos 3 y , ln 5 e и log 5 2 x видим, что скобки перед функциями не меняют значения всего выражения, то есть они равноценны. Получаем записи вида ( sin x ) 2 , ( a r c cos y ) 3 , ( ln e ) 5 и log 5 x 2 . Допустимо опущение скобок.

Отрицательные числа в скобках

Если необходимо изобразить отрицательные числа, тогда применяют круглые скобки в выражении. Такая запись, как 5 + ( − 3 ) + ( − 2 ) · ( − 1 ) , 5 + — 2 3 , 2 5 7 — 5 + — 6 7 3 · ( — 2 ) · — 3 , 5 предназначена для того, чтобы упорядочить отрицательные числа в выражении.

Скобки не ставятся для отрицательного числа того, когда оно располагается в начале любого выражения или дроби. Если имеем пример вида − 5 · 4 + ( − 4 ) : 2 , то очевидно, что знак минуса перед 5 можно не заключать в скобки, а при 3 — 0 , 4 — 2 , 2 · 3 + 7 + 3 — 1 : 2 число 2 , 2 записано вначале, значит скобки также не нужны. Со скобками можно записать выражение ( − 5 ) · 4 + ( − 4 ) : 2 или 3 — 0 , 4 — 2 , 2 · 3 + 7 + 3 — 1 : 2 . Запись, где имеются скобки, считается более строгой.

Знак минуса может находиться не только перед числом, но и перед переменными, степенями, корнями, дробями, функциями, тогда их следует заключить в скобки. Это такие записи, как 5 · ( − x ) , 12 : ( − 22 ) , 5 · — 3 + 7 — 1 + 7 : — x 2 + 1 3 , 4 3 4 — — x + 2 x — 1 , 2 · ( — ( 3 + 2 · 4 ) , 5 · ( — log 3 2 ) — ( — 2 x 2 + 4 ) , sin x · ( — cos 2 x ) + 1

Скобки и координаты векторов

При рассмотрении векторов в системе координат используется понятие координат вектора. То есть при обозначении используют координаты, которые записаны в виде перечисления в скобках.

Учебники предлагают два вида обозначения: a → 0 ; — 3 или a → 0 ; — 3 . Обе записи равнозначны и имеют значение координат 0 , — 3 . При изображении в трехмерном пространстве добавляется еще одна координата. Тогда запись выглядит так: A B → 0 , — 3 , 2 3 или A B → 0 , — 3 , 2 3 .

Обозначение координат может быть как со значком вектора на самом векторе, так и без. Но запись координат производится через запятую в виде перечисления. Запись принимает вид a = ( 2 , 4 , − 2 , 6 , 1 2 ) , где вектор обозначается в пятимерном пространстве. Реже можно увидеть обозначение двумерного пространства в виде a = 3 — 7

Решение ещё более сложных линейных уравнений

То, что мы сейчас будем решать, уже сложно назвать простейшими задача, однако смысл остается тем же самым.

Задача №1

\

Давайте перемножим все элементы в первой части:

Давайте выполним уединение:

Приводим подобные:

Выполняем последний шаг:

\

Вот наш окончательный ответ. И, несмотря на то, что у нас в процессе решения возникали коэффициенты с квадратичной функцией, однако они взаимно уничтожились, что делает уравнение именно линейным, а не квадратным.

Задача №2

\

Давайте аккуратно выполним первый шаг: умножаем каждый элемент из первой скобки на каждый элемент из второй. Всего должно получиться четыре новых слагаемых после преобразований:

А теперь аккуратно выполним умножение в каждом слагаемом:

Перенесем слагаемые с «иксом» влево, а без — вправо:

\

Приводим подобные слагаемые:

Мы вновь получили окончательный ответ.

Нюансы решения

Важнейшее замечание по поводу этих двух уравнений состоит в следующем: как только мы начинаем умножать скобки, в которых находится более чем оно слагаемое, то выполняется это по следующему правилу: мы берем первое слагаемое из первой и перемножаем с каждым элементом со второй; затем берем второй элемент из первой и аналогично перемножаем с каждым элементом со второй. В итоге у нас получится четыре слагаемых.

Как раскрыть вложенные скобки

При этом важно при раскрытии одной из скобок не трогать остальные скобки, просто переписывая их как есть. Пример

12 — (a + (6 — b) — 3) = 12 — a — (6 — b) + 3 = 12 — a — 6 + b + 3 = 9 — a + b

Пример. 12 — (a + (6 — b) — 3) = 12 — a — (6 — b) + 3 = 12 — a — 6 + b + 3 = 9 — a + b

Уравнение с одним неизвестным, которое после раскрытия скобок и приведения подобных членов принимает вид

aх + b = 0
, где a и b произвольные числа, называется линейным уравнением

с одним неизвестным. Cегодня разберёмся, как эти линейные уравнения решать.

Например, все уравнения:

2х + 3= 7 – 0,5х; 0,3х = 0; x/2 + 3 = 1/2 (х – 2) — линейные.

Значение неизвестного, обращающее уравнение в верное равенство называется решением

или корнем уравнения

.

Например, если в уравнении 3х + 7 = 13 вместо неизвестного х подставить число 2 , то получим верное равенство 3· 2 +7 = 13. Значит, значение х = 2 есть решение или корень уравнения.

А значение х = 3 не обращает уравнение 3х + 7 = 13 в верное равенство, так как 3· 2 +7 ≠ 13. Значит, значение х = 3 не является решением или корнем уравнения.

Решение любых линейных уравнений сводится к решению уравнений вида

aх + b = 0.

Перенесем свободный член из левой части уравнения в правую, изменив при этом знак перед b на противоположный, получим

Если a ≠ 0, то х = ‒ b/a
.

Пример 1.

Решите уравнение 3х + 2 =11.

Перенесем 2 из левой части уравнения в правую, изменив при этом знак перед 2 на противоположный, получим 3х = 11 – 2.

Выполним вычитание, тогда 3х = 9.

Чтобы найти х надо разделить произведение на известный множитель, то есть х = 9: 3.

Значит, значение х = 3 является решением или корнем уравнения.

Ответ: х = 3
.

Если а = 0 и b = 0
, то получим уравнение 0х = 0. Это уравнение имеет бесконечно много решений, так как при умножении любого числа на 0 мы получаем 0,но b тоже равно 0. Решением этого уравнения является любое число.

Пример 2.
Решите уравнение 5(х – 3) + 2 = 3 (х – 4) + 2х ‒ 1.

Раскроем скобки: 5х – 15 + 2 = 3х – 12 + 2х ‒ 1.

5х – 3х ‒ 2х = – 12 ‒ 1 + 15 ‒ 2.

Приведем подобные члены: 0х = 0.

Ответ: х — любое число
.

Если а = 0 и b ≠ 0
, то получим уравнение 0х = — b. Это уравнение решений не имеет, так как при умножении любого числа на 0 мы получаем 0, но b ≠ 0 .

Пример 3.
Решите уравнение х + 8 = х + 5.

Сгруппируем в левой части члены, содержащие неизвестные, а в правой ‒ свободные члены: х – х = 5 ‒ 8.

Приведем подобные члены: 0х = ‒ 3.

Ответ: нет решений.

На рисунке 1

изображена схема решения линейного уравнения

Составим общую схему решения уравнений с одной переменной. Рассмотрим решение примера 4.

Пример 4.

Пусть надо решить уравнение

1) Умножим все члены уравнения на наименьшее общее кратное знаменателей, равное 12.

2) После сокращения получим4 (х – 4) + 3·2 (х + 1) ‒ 12 = 6·5 (х – 3) + 24х – 2 (11х + 43)

3) Чтобы отделить члены, содержащие неизвестные и свободные члены, раскроем скобки:4х – 16 + 6х + 6 – 12 = 30х – 90 + 24х – 22х – 86 .

4) Сгруппируем в одной части члены, содержащие неизвестные, а в другой – свободные члены:4х + 6х – 30х – 24х + 22х = ‒ 90 – 86 + 16 – 6 + 12.

5) Приведем подобные члены: ‒ 22х = ‒ 154.

6) Разделим на – 22 , Получим х = 7.

Как видим, корень уравнения равен семи.

Вообще такие уравнения можно решать по следующей схеме
:

а) привести уравнение к целому виду;

б) раскрыть скобки;

в) сгруппировать члены, содержащие неизвестное, в одной части уравнения, а свободные члены ‒ в другой;

г) привести подобные члены;

д) решить уравнение вида aх = b,которое получили после приведения подобных членов.

Однако эта схема не обязательна для всякого уравнения. При решении многих более простых уравнений приходится начинать не с первого, а со второго (Пример. 2
), третьего (Пример. 1, 3
) и даже с пятого этапа, как в примере 5.

Пример 5.
Решите уравнение 2х = 1/4.

Находим неизвестное х = 1/4: 2, х = 1/8
.

Рассмотрим решение некоторых линейных уравнений, встречающихся на основном государственном экзамене.

Пример 6.
Решите уравнение 2 (х + 3) = 5 – 6х.

2х + 6 = 5 – 6х

2х + 6х = 5 – 6

Ответ: ‒ 0, 125

Пример 7.
Решите уравнение – 6 (5 – 3х) = 8х – 7.

– 30 + 18х = 8х – 7

18х – 8х = – 7 +30

Ответ: 2,3

Пример 8. Решите уравнение


3(3х – 4) = 4 · 7х + 24

9х – 12 = 28х + 24

9х – 28х = 24 + 12

Пример 9.
Найдите f(6), если f (x + 2) = 3 7-х

Решение

Так как надо найти f(6), а нам известно f (x + 2), то х + 2 = 6.

Решаем линейное уравнение х + 2 = 6, получаем х = 6 – 2, х = 4.

Если х = 4, тогда f(6) = 3 7-4 = 3 3 = 27

Ответ: 27.

Если у Вас остались вопросы, есть желание разобраться с решением уравнений более основательно, . Буду рада Вам помочь!

Также TutorOnline советует посмотреть новый видеоурок от нашего репетитора Ольги Александровны, который поможет разобраться как с линейными уравнениями, так и с другими.

blog.сайт,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Калькулятор онлайн.Упрощение многочлена.Умножение многочленов.

С помощью данной математической программы вы можете упростить многочлен. В процессе работы программа: — умножает многочлены — суммирует одночлены (приводит подобные) — раскрывает скобки — возводит многочлен в степень

Программа упрощения многочленов не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы вы могли проконтролировать свои знания по математике и/или алгебре.

Данная программа может быть полезна учащимся общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь. Через несколько секунд решение появится ниже. Пожалуйста подождите сек.

Механизм раскрытия скобок

Правила раскрытия скобок, которые мы сейчас рассмотрели, основаны на распределительном законе умножения:

На самом деле раскрытием скобок
называют ту процедуру, когда общий множитель умножают на каждое слагаемое в скобках. В результате такого умножения скобки исчезают. Например, раскроем скобки в выражении 3×(4+5)

3 × (4 + 5) = 3 × 4 + 3 × 5

Поэтому если нужно умножить число на выражение в скобках (или выражение в скобках умножить на число) надо говорить раскроем скобки
.

Но как связан распределительный закон умножения с правилами раскрытия скобок, которые мы рассматривали ранее?

Дело в том, что перед любыми скобками стоит общий множитель. В примере 3×(4+5)
общий множитель это 3
. А в примере a(b+c)
общий множитель это переменная a .

Если перед скобками нет чисел или переменных, то общим множителем является 1
или −1
, в зависимости от того какой знак стоит перед скобками. Если перед скобками стоит плюс, значит общим множителем является 1
. Если перед скобками стоит минус, значит общим множителем является −1
.

К примеру, раскроем скобки в выражении −(3b−1)
. Перед скобками стоит минус, поэтому нужно воспользоваться вторым правилом раскрытия скобок, то есть опустить скобки вместе с минусом, стоящим перед скобками. А выражение, которое было в скобках, записать с противоположными знаками:

Мы раскрыли скобки, воспользовавшись правилом раскрытия скобок. Но эти же скобки можно раскрыть, воспользовавшись распределительным законом умножения. Для этого сначала записываем перед скобками общий множитель 1, который не был записан:

Минус, который раньше стоял перед скобками относился к этой единице. Теперь можно раскрыть скобки, применяя распределительный закон умножения. Для этого общий множитель −1
нужно умножить на каждое слагаемое в скобках и полученные результаты сложить.

Для удобства заменим разность, находящуюся в скобках на сумму:

−1 (3b −1) = −1 (3b + (−1)) = −1 × 3b + (−1) × (−1) = −3b + 1

Как и в прошлый раз мы получили выражение −3b+1
. Каждый согласится с тем, что в этот раз затрачено больше времени на решение столь простейшего примера. Поэтому разумнее пользоваться готовыми правилами раскрытия скобок, которые мы рассматривали в данном уроке:

Но не мешает знать, как эти правила работают.

В данном уроке мы научились ещё одному тождественному преобразованию. Вместе с раскрытием скобок, вынесением общего за скобки и приведением подобных слагаемых можно немного расширить круг решаемых задач. Например:

Здесь нужно выполнить два действия — сначала раскрыть скобки, а потом привести подобные слагаемые. Итак, по порядку:

1) Раскрываем скобки:

2) Приводим подобные слагаемые:

В получившемся выражении −10b+(−1)
можно раскрыть скобки:

Пример 2.
Раскрыть скобки и привести подобные слагаемые в следующем выражении:

1) Раскроем скобки:

2) Приведем подобные слагаемые.
В этот раз для экономии времени и места не будем записывать, как коэффициенты умножаются на общую буквенную часть

Пример 3.
Упростить выражение 8m+3m
и найти его значение при m=−4

1) Сначала упростим выражение. Чтобы упростить выражение 8m+3m
, можно вынести в нём общий множитель m
за скобки:

2) Находим значение выражения m(8+3)
при m=−4
. Для этого в выражение m(8+3)
вместо переменной m
подставляем число −4

m (8 + 3) = −4 (8 + 3) = −4 × 8 + (−4) × 3 = −32 + (−12) = −44

Основная функция скобок – менять порядок действий при вычислениях значений . Например
, в числовом выражении \(5·3+7\) сначала будет вычисляться умножение, а потом сложение: \(5·3+7 =15+7=22\). А вот в выражении \(5·(3+7)\) сначала будет вычислено сложение в скобке, и лишь потом умножение: \(5·(3+7)=5·10=50\).

Пример.

Раскройте скобку: \(-(4m+3)\).Решение

: \(-(4m+3)=-4m-3\).

Пример.

Раскройте скобку и приведите подобные слагаемые \(5-(3x+2)+(2+3x)\).Решение

: \(5-(3x+2)+(2+3x)=5-3x-2+2+3x=5\).

Пример.

Раскройте скобки \(5(3-x)\).Решение

: В скобке у нас стоят \(3\) и \(-x\), а перед скобкой — пятерка. Значит, каждый член скобки умножается на \(5\) — напоминаю, что знак умножения между числом и скобкой в математике не пишут для сокращения размеров записей
.

Пример.

Раскройте скобки \(-2(-3x+5)\).Решение

: Как и в предыдущем примере, стоящие в скобке \(-3x\) и \(5\) умножаются на \(-2\).

Пример.

Упростить выражение: \(5(x+y)-2(x-y)\).Решение

: \(5(x+y)-2(x-y)=5x+5y-2x+2y=3x+7y\).

Осталось рассмотреть последнюю ситуацию.

Прочие знаки

Для математических, алгебраических и прочих расчетов важно знать различие обобщающих знаков. От правильности вычислений зависит итоговый результат.

Удобство записи системы уравнений

Система уравнений с объединяющими значками может раскрываться с помощью фигурной конфигурации{{. Это характеризует объединение неравенства или уравнений. Пример: {x2−1=0x2+x−2=0x2−1=0x2+x-2=0 или неравенства с несколькими переменными {x2−y>03x+2y≤3, cos x12 (x+π3)=02×2−4≥5×2-y>03x+2y≤3, cos x12x+π3=02×2−4≥5.

Применение фигурных знаков относится к представлению совмещения множеств. При решении системы с фигурной скобкой уравнения пересекаются, а [] объединяет их.

Кусочная функция изображается одиночной { скобкой, имеющей формулы, обусловливающие функцию, содержащие определенные промежутки. Пример:|x|={x, x≥0−x, x<0x=x, x≥0-x, x<0.

Для изображения координатных точек в виде промежутков, применяются круглые скобки. Они располагаются на координатной прямой, а также в прямоугольной системе или n-пространстве.

Запись двух координат А (1)А (2) означает, что т. АА имеет координату со значением 12, тогда Q (c, d, e) Q (c, d, e) свидетельствует о том, что т. QQ содержит координаты x, y, zx, y, z.

Множества задаются через перечисление элементов, входящих в эту область с помощью фигурных скобок, где участвующие элементы перечисляются через запятую. Пример: А={5, 6, 7, 8}А={5, 6, 7, 8}.

Примеры решений

Когда в скобки заключают выражение, содержащее круглые и квадратные скобки, пользуются фигурными знаками {}. Вычисление по таким формулам осуществляется в особом порядке: сначала считают внутри всех круглых скобок в определенной последовательности. Затем — внутри всех квадратных и фигурных.

Например, расчет предполагает поэтапное действие. Выражение последовательно 5 — 3 + 2 = 4. Если сначала сложить 3+2, затем отнять от 5−5 получится 0. Для указания правильной последовательности применяют скобки.

(5−2)+3 = 3+3 = 6.

7 — (2+2) = 7−4 = 3.

+(6−4)= + 2= 11+2= 13.

Парные знаки не ставятся, если сложение и вычитание исполняются в указанной последовательности. Также когда внутри происходят операции умножения или деления.

По правилам сначала выполняются операции с цифрами в скобочках, а умножение или деление производятся в порядке их следования, ранее, чем сложение и вычитание. Исполняются остальные действия, а умножение и деление осуществляются в порядке их следования.

При использовании квадратных или фигурных знаков в начале вычисления начинаются внутри круглых скобочек, далее — внутри всех квадратных и фигурных. Оставшиеся действия происходят в последнюю очередь. Обобщающие знаки — скобки важны и незаменимы в математических расчетах для правильного вычисления.

Первое правило раскрытия скобок

Рассмотрим следующее выражение:

Значение данного выражения равно 2. Раскроем скобки в данном выражении. Раскрыть скобки означает избавиться от них, не влияя на значение выражения. То есть после избавления от скобок значение выражения 8 + (−9 + 3) по прежнему должно быть равно двум.

Первое правило раскрытия скобок выглядит следующим образом:

При раскрытии скобок, если перед скобками стоит плюс, то этот плюс опускается вместе со скобками.

Итак, мы видим что в выражении 8 + (−9 + 3) перед скобками стоит плюс. Этот плюс нужно опустить вместе со скобками. Иными словами, скобки исчезнут вместе с плюсом, который перед ними стоял. А то, что было в скобках запишется без изменений:

Мы получили выражение без скобок 8−9+3 . Данное выражение равно 2, как и предыдущее выражение со скобками было равно 2.

Таким образом, между выражениями 8+(−9+3) и 8−9+3 можно поставить знак равенства, поскольку они равны одному и тому же значению:

8 + (−9 + 3) = 8 − 9 + 3

Пример 2. Раскрыть скобки в выражении 3 + (−1 − 4)

Перед скобками стоит плюс, значит этот плюс опускается вместе со скобками. То, что было в скобках останется без изменений:

3 + (−1 − 4) = 3 − 1 − 4

Пример 3. Раскрыть скобки в выражении 2 + (−1)

Перед скобками стоит плюс, значит этот плюс опускается вместе со скобками. То, что было в скобках останется без изменений:

В данном примере раскрытие скобок стало своего рода обратной операцией замене вычитания сложением. Как это понимать?

В выражении 2 − 1 происходит вычитание, но его можно заменить сложением. Тогда получится выражение 2 + (−1) . Но если в выражении 2 + (−1) раскрыть скобки, то получится изначальное 2 − 1 .

Поэтому первое правило раскрытия скобок можно использовать для упрощения выражений после каких-нибудь преобразований. То есть избавить его от скобок и сделать проще.

Чтобы упростить данное выражение, можно привести подобные слагаемые. Напомним, что для приведения подобных слагаемых, нужно сложить коэффициенты подобных слагаемых и результат умножить на общую буквенную часть:

Получили выражение 3a + (−4b) . В этом выражении раскроем скобки. Перед скобками стоит плюс, поэтому используем первое правило раскрытия скобок, то есть опускаем скобки вместе с плюсом, который стоит перед этими скобками:

Таким образом, выражение 2a+a−5b+b упрощается до 3a−4b .

Раскрыв одни скобки, по пути могут встретиться другие. К ним применяем те же правила, что и к первым. Например, раскроем скобки в следующем выражении:

Здесь два места, где нужно раскрыть скобки. В данном случае применимо первое правило раскрытия скобок, а именно опускание скобок вместе с плюсом, который стоит перед этими скобками:

2 + (−3 + 1) + 3 + (−6) = 2 − 3 + 1 + 3 − 6

Пример 3. Раскрыть скобки в выражении 6+(−3)+(−2)

В обоих местах, где имеются скобки, перед ними стоит плюс. Здесь опять же применяется первое правило раскрытия скобок:

6 + (−3) + (−2) = 6 − 3 − 2

Иногда первое слагаемое в скобках записано без знака. Например, в выражении 1+(2+3−4) первое слагаемое в скобках 2 записано без знака. Возникает вопрос, а какой знак будет стоять перед двойкой после того, как скобки и плюс, стоящий перед скобками опустятся? Ответ напрашивается сам — перед двойкой будет стоять плюс.

На самом деле даже будучи в скобках перед двойкой стоит плюс, но мы его не видим по причине того, что его не записывают. Мы уже говорили, что полная запись положительных чисел выглядит как +1, +2, +3 . Но плюсы по традиции не записывают, поэтому мы и видим привычные для нас положительные числа 1, 2, 3 .

Поэтому, чтобы раскрыть скобки в выражении 1+(2+3−4) , нужно как обычно опустить скобки вместе с плюсом, стоящим перед этими скобками, но первое слагаемое которое было в скобках записать со знаком плюс:

1 + (2 + 3 − 4) = 1 + 2 + 3 − 4

Пример 4. Раскрыть скобки в выражении −5 + (2 − 3)

Перед скобками стоит плюс, поэтому применяем первое правило раскрытия скобок, а именно опускаем скобки вместе с плюсом, который стоит перед этими скобками. Но первое слагаемое, которое в скобках записываем со знаком плюс:

−5 + (2 − 3) = −5 + 2 − 3

Пример 5. Раскрыть скобки в выражении (−5)

Перед скобками стоит плюс, но он не записан по причине того, что до него не было других чисел или выражений. Наша задача убрать скобки, применив первое правило раскрытия скобок, а именно опустить скобки вместе с этим плюсом (даже если он невидим)

Пример 6. Раскрыть скобки в выражении 2a + (−6a + b)

Перед скобками стоит плюс, значит этот плюс опускается вместе со скобками. То, что было в скобках запишется без изменений:

Пример 7. Раскрыть скобки в выражении 5a + (−7b + 6c) + 3a + (−2d)

В данном выражении имеется два места, где нужно раскрыть скобки. В обоих участках перед скобками стоит плюс, значит этот плюс опускается вместе со скобками. То, что было в скобках запишется без изменений:

Вынесение общего множителя за скобки

В предыдущем уроке мы изучили умножение многочлена на одночлен. Например, произведение монома a и полинома b + c находится так:

a(b + c) = ab + bc

Однако в ряде случае удобнее выполнить обратную операцию, которую можно назвать вынесением общего множителя за скобки:

ab + bc = a(b + c)

Например, пусть нам надо вычислить значение полинома ab + bc при значениях переменных a = 15,6, b = 7,2, c = 2,8. Если подставить их напрямую в выражение, то получим

ab + bc = 15.6 * 7.2 + 15.6 * 2.8

что, скорее всего, не получится посчитать в уме. Если же вынести a за скобки, то получим иную запись:

ab + bc = a(b + c) = 15.6 * (7.2 + 2.8) = 15.6 * 10 = 156

В данном случае мы представили полином ab + bc как произведение двух множителей: a и b + с. Данное действие называют разложением многочлена на множители.

При этом каждый из множителей, на которые разложили многочлен, в свою очередь может быть многочленом или одночленом.

Рассмотрим полином 14ab – 63b2. Каждый из входящих в него одночленов можно представить как произведение:

14ab = 7b * 2a

63b2 = 7b * 9b

Видно, что у обоих многочленов есть общий множитель 7b. Значит, его можно вынести за скобки:

14ab — 63b2 = 7b*2a — 7b*9b = 7b(2a-9b)

Проверить правильность вынесения множителя за скобки можно с помощью обратной операции – раскрытия скобки:

7b(2a — 9b) = 7b*2a — 7b*9b = 14ab — 63b2

Важно понимать, что часто полином можно разложить несколькими способами, например:

5abc + 6bcd = b(5ac + 6cd) = c(5ab + 6bd) = bc(5a + 6d)

Обычно стремятся вынести, грубо говоря, «наибольший» одночлен. То есть раскладывают полином так, чтобы из оставшегося полинома больше нечего нельзя было вынести. Так, при разложении

5abc + 6bcd = b(5ac + 6cd)

в скобках осталась сумма одночленов, у которых есть общий множитель с. Если же вынести и его, то общих множителей в скобках не останется:

b(5ac + 6cd) = bc(5a + 6d)

Разберем детальнее, как находить общие множители у одночленов. Пусть надо разложить сумму

8a3b4 + 12a2b5v + 16a4b3c10

Она состоит из трех слагаемых. Сначала посмотрим на числовые коэффициенты перед ними. Это 8, 12 и 16. В 3 уроке 6 класса рассматривалась тема НОД и алгоритм его нахождения.Это наибольший общий делитель.Почти всегда его можно подобрать устно. Числовым коэффициентом общего множителя как раз будет НОД числовых коэффициентов слагаемых полинома. В данном случае это число 4.

Далее рассмотрим буквенную часть. В ней должны быть переменные, которые есть во ВСЕХ слагаемых. В данном случае это a и b, а переменная c общей не является, так как не входит в первое слагаемое.

Далее смотрим на степени у этих переменных. В общем множителе у букв должны быть минимальные степени, которые встречаются в слагаемых. Так, у переменной a в многочлене степени 3, 2, и 4 (минимум 2), поэтому в общем множителе будет стоять a2. У переменной b минимальная степень равна 3, поэтому в общем множителе будет стоять b3:

8a3b4 + 12a2b5v + 16a4b3c10 = 4a2b3(2ab + 3b2c + 4a2c10)

В результате у оставшихся слагаемых 2ab, 3b2c, 4a2c10 нет ни одной общей буквенной переменной, а у их коэффициентов 2, 3 и 4 нет общих делителей.

Выносить за скобки можно не только одночлены, но и многочлены. Например:

x(a-5) + 2y(a-5) = (a-5)(x+2y)

Еще один пример. Необходимо разложить выражение

5t(8y — 3x) + 2s(3x — 8y)

Решение. Напомним, что знак минус меняет знаки в скобках на противоположные, поэтому

-(8y — 3x) = -8y + 3x = 3x — 8y

Значит, можно заменить (3x – 8y) на – (8y – 3x):

5t(8y — 3x) + 2s(3x — 8y) = 5t(8y — 3x) + 2*(-1)s(8y — 3x) = (8y — 3x)(5t — 2s)

Ответ: (8y – 3x)(5t – 2s).

Запомним, что вычитаемое и уменьшаемое можно поменять местами, если изменить знак перед скобками:

(a — b) = — (b — a)

Верно и обратное: минус, уже стоящий перед скобками, можно убрать, если одновременно переставить местами вычитаемое и уменьшаемое:

Этот прием часто используется при решении заданий.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Курс на развитие
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: