Как написать уравнение прямой по двум точкам

Двумерный случай

Пусть дан отрезок , т.е. известны координаты его концов , , , .

Требуется построить уравнение прямой на плоскости, проходящей через этот отрезок, т.е. найти коэффициенты , , в уравнении прямой:

Заметим, что искомых троек , проходящих через заданный отрезок, бесконечно много: можно умножить все три коэффициента на произвольное ненулевое число и получить ту же самую прямую. Следовательно, наша задача — найти одну из таких троек.

Нетрудно убедиться (подстановкой этих выражений и координат точек и в уравнение прямой), что подходит следующий набор коэффициентов:

Целочисленный случай

Важным преимуществом такого способа построения прямой является то, что если координаты концов были целочисленными, то и полученные коэффициенты также будут целочисленными. В некоторых случаях это позволяет производить геометрические операции, вообще не прибегая к вещественным числам.

Однако есть и небольшой недостаток: для одной и той же прямой могут получаться разные тройки коэффициентов. Чтобы избежать этого, но не уходить от целочисленных коэффициентов, можно применить следующий приём, часто называемый нормированием. Найдём наибольший общий делитель чисел , , , поделим на него все три коэффициента, а затем произведём нормировку знака: если или , то умножим все три коэффициента на . В итоге мы придём к тому, что для одинаковых прямых будут получаться одинаковые тройки коэффициентов, что позволит легко проверять прямые на равенство.

Вещественнозначный случай

При работе с вещественными числами следует всегда помнить о погрешностях.

Коэффициенты и получаются у нас порядка исходных координат, коэффициент — уже порядка квадрата от них. Это уже может быть достаточно большими числами, а, например, при пересечении прямых они станут ещё больше, что может привести к большим ошибкам округления уже при исходных координатах порядка .

Поэтому при работе с вещественными числами желательно производить так называемую нормировку прямой: а именно, делать коэффициенты такими, чтобы . Для этого надо вычислить число :

и разделить все три коэффициента , , на него.

Тем самым, порядок коэффициентов и уже не будет зависеть от порядка входных координат, а коэффициент будет того же порядка, что и входные координаты. На практике это приводит к значительному улучшению точности вычислений.

Наконец, упомянем о сравнении прямых — ведь после такой нормировки для одной и той же прямой могут получаться только две тройки коэффициентов: с точностью до умножения на . Соответственно, если мы произведём дополнительную нормировку с учётом знака (если или , то умножать на ), то получающиеся коэффициенты будут уникальными.

Прямая линия на плоскости.

Параметрическое уравнение прямой утверждает, что точка \(M\) лежит на прямой тогда и только тогда, когда разность ее радиус-вектора и радиус-вектора начальной точки \(M_{0}\) коллинеарна направляющему вектору \(\boldsymbol{a}\). Пусть в некоторой общей декартовой системе координат на плоскости заданы координаты точек и вектора \(M(x, y)\), \(M_{0}(x_{0}, y_{0})\), \(\boldsymbol{a}(a_{1}, a_{2})\). Тогда условие коллинеарности может быть записано в виде равенства
$$
\begin{vmatrix}
x-x_{0}& y-y_{0}\\
a_{1}& a_{2}
\end{vmatrix}
= 0.\label{ref8}
$$

Поэтому мы можем сформулировать следующее утверждение.

Утверждение 1.

В любой декартовой системе координат на плоскости уравнение прямой с начальной точкой \(M_{0}(x_{0}, y_{0})\) и направляющим вектором \(\boldsymbol{a}(a_{1}, a_{2})\) может быть записано в виде \eqref{ref8}.

Уравнение \eqref{ref8} линейное. Действительно, после преобразования оно принимает вид \(a_{2}x-a_{1}y+(a_{1}y_{0}-a_{2}x_{0}) = 0\), то есть \(Ax+By+C = 0\), где \(A = a_{2}\), \(B = -a_{1}\) и \(C = a_{1}y_{0}-a_{2}x_{0}\).

С другой стороны, при заданной системе координат для произвольного линейного многочлена \(Ax+By+C\), \(A^{2}+B^{2} \neq 0\), найдутся такая точка \(M_{0}(x_{0}, y_{0})\) и такой вектор \(\boldsymbol{a}(a_{1}, a_{2})\), что
$$
Ax+By+C =
\begin{vmatrix}
x-x_{0}& y-y_{0}\\
a_{1}& a_{2}
\end{vmatrix}.\label{ref9}
$$
Действительно, выберем числа \(x_{0}\) и \(y_{0}\) так, чтобы \(Ax_{0}+By_{0}+C = 0\). В качестве таких чисел можно взять, например,
$$
x_{0} = \frac{-AC}{A^{2}+B^{2}},\ y_{0} = \frac{-BC}{A^{2}+B^{2}}.\label{ref10}
$$
Если \(C = -Ax_{0}-By_{0}\), то \(Ax+By+C = A(x-x_{0})+B(y-y_{0})\), то есть выполнено равенство \eqref{ref9} при \(a_{2} = A\), \(a_{1} = -B\). Итак, мы получили следующее утверждение.

Утверждение 2.

Вектор с координатами \((-B, A)\) можно принять за направляющий вектор прямой с уравнением \eqref{ref2} в общей декартовой системе координат, а точку \eqref{ref10} за начальную точку.

Следствие.

Если система координат декартова прямоугольная, то вектор \(\boldsymbol{n}(A, B)\) перпендикулярен прямой с уравнением \eqref{ref1}.

Действительно, в этом случае \((\boldsymbol{a}, \boldsymbol{n}) = -BA+AB = 0\).

Пусть в уравнении прямой \(Ax+By+C = 0\) коэффициент \(B\) отличен от нуля. Это означает, что отлична от нуля первая компонента направляющего вектора, и прямая не параллельна оси ординат. В этом случае уравнение прямой можно представить в виде
$$
y = kx+b,\label{ref11}
$$
где \(k = -A/B\), а \(b = -C/B\). Мы видим, что к равно отношению компонент направляющего вектора: \(k = a_{2}/a_{1}\) (рис. 6.3).

Рис. 6.3. k=-1. Прямая y=-x+1/2

Определение.

Отношение компонент направляющего вектора \(a_{2}/a_{1}\) называется угловым коэффициентом прямой.

Угловой коэффициент прямой в декартовой прямоугольной системе координат равен тангенсу угла, который прямая образует с осью абсцисс. Угол этот отсчитывается от оси абсцисс в направлении кратчайшего поворота от \(\boldsymbol{e}_{1}\) к \(\boldsymbol{e}_{2}\) (рис. 6.4).

Рис. 6.4. \(k=\operatorname{tg}\varphi = -1\). Прямая \(y=-x+1/2\)

Положив \(x = 0\) в уравнении \eqref{ref11}, получаем \(y = b\). Это означает, что свободный член уравнения \(b\) является ординатой точки пересечения прямой с осью ординат.

Если же в уравнении прямой \(B = 0\) и ее уравнение нельзя представить в виде \eqref{ref11}, то обязательно \(A \neq 0\). В этом случае прямая параллельна оси ординат и ее уравнению можно придать вид \(x = x_{0}\), где \(x_{0} = -C/A\) — абсцисса точки пересечения прямой с осью абсцисс.

Преобразование канонических уравнений прямой в пространстве в другие виды уравнений

Иногда пользоваться каноническими уравнениями вида x — x 1 a x = y — y 1 a y = z — z 1 a z не очень удобно. Для решения некоторых задач лучше использовать запись x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ . В некоторых случаях более предпочтительно определить нужную прямую с помощью уравнений двух пересекающихся плоскостей A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 . Поэтому в данном пункте мы разберем, как можно перейти от канонических уравнений к другим видам, если это требуется нам по условиям задачи.

Понять правила перехода к параметрическим уравнениям несложно. Сначала приравняем каждую часть уравнения к параметру λ и разрешим эти уравнения относительно других переменных. В итоге получим:

x — x 1 a x = y — y 1 a y = z — z 1 a z ⇔ x — x 1 a x = y — y 1 a y = z — z 1 a z ⇔ ⇔ x — x 1 a x = λ y — y 1 a y = λ z — z 1 a z = λ ⇔ x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ

Значение параметра λ может быть любым действительным числом, ведь и x , y , z могут принимать любые действительные значения.

В прямоугольной системе координат в трехмерном пространстве задана прямая, которая определена уравнением x — 2 3 = y — 2 = z + 7 0 . Запишите каноническое уравнение в параметрическом виде.

Решение

Сначала приравниваем каждую часть дроби к λ .

x — 2 3 = y — 2 = z + 7 0 ⇔ x — 2 3 = λ y — 2 = λ z + 7 0 = λ

Теперь разрешаем первую часть относительно x , вторую – относительно y , третью – относительно z . У нас получится:

x — 2 3 = λ y — 2 = λ z + 7 0 = λ ⇔ x = 2 + 3 · λ y = — 2 · λ z = — 7 + 0 · λ ⇔ x = 2 + 3 · λ y = — 2 · λ z = — 7

Ответ: x = 2 + 3 · λ y = — 2 · λ z = — 7

Следующим нашим шагом будет преобразование канонических уравнений в уравнение двух пересекающихся плоскостей (для одной и той же прямой).

Равенство x — x 1 a x = y — y 1 a y = z — z 1 a z нужно для начала представить в виде системы уравнений:

x — x 1 a x = y — y 1 a y x — x 1 a x = z — z 1 a x y — y 1 a y = z — z 1 a z

Поскольку p q = r s мы понимаем как p · s = q · r , то можно записать:

x — x 1 a x = y — y 1 a y x — x 1 a x = z — z 1 a z y — y 1 a y = z — z 1 a z ⇔ a y · ( x — x 1 ) = a x · ( y — y 1 ) a z · ( x — x 1 ) = a x · ( z — z 1 ) a z · ( y — y 1 ) = a y · ( z — z 1 ) ⇔ ⇔ a y · x — a x · y + a x · y 1 — a y · x 1 = 0 a z · x — a x · z + a x · z 1 — a z · x 1 = 0 a z · y — a y · z + a y · z 1 — a z · y 1 = 0

В итоге у нас вышло, что:

x — x 1 a x = y — y 1 a y = z — z 1 a z ⇔ a y · x — a x · y + a x · y 1 — a y · x 1 = 0 a z · x — a x · z + a x · z 1 — a z · x 1 = 0 a z · y — a y · z + a y · z 1 — a z · y 1 = 0

Выше мы отмечали, что все три параметра a не могут одновременно быть нулевыми. Значит, ранг основной матрицы системы будет равен 2 , поскольку a y — a x 0 a z 0 — a x 0 a z — a y = 0 и один из определителей второго порядка не равен 0 :

a y — a x a z 0 = a x · a z , a y 0 a z — a x = a x · a y , — a x 0 0 — a x = a x 2 a y — a x 0 a z = a y · a z , a y 0 0 — a y = — a y 2 , — a x 0 a z — a y = a x · a y a z 0 0 a z = a z 2 , a z — a x 0 — a y = — a y · a z , 0 — a x a z — a y = a x · a z

Это дает нам возможность исключить одно уравнение из наших расчетов. Таким образом, канонические уравнения прямой можно преобразовать в систему из двух линейных уравнений, которые будут содержать 3 неизвестных. Они и будут нужными нам уравнениями двух пересекающихся плоскостей.

Рассуждение выглядит довольно сложным, однако на практике все делается довольно быстро. Продемонстрируем это на примере.

Прямая задана каноническим уравнением x — 1 2 = y 0 = z + 2 0 . Напишите для нее уравнение пересекающихся плоскостей.

Решение

Начнем с попарного приравнивания дробей.

x — 1 2 = y 0 = z + 2 0 ⇔ x — 1 2 = y 0 x — 1 2 = z + 2 0 y 0 = z + 2 0 ⇔ ⇔ 0 · ( x — 1 ) = 2 y 0 · ( x — 1 ) = 2 · ( z + 2 ) 0 · y = 0 · ( z + 2 ) ⇔ y = 0 z + 2 = 0 0 = 0

Теперь исключаем из расчетов последнее уравнение, потому что оно будет верным при любых x , y и z . В таком случае x — 1 2 = y 0 = z + 2 0 ⇔ y = 0 z + 2 = 0 .

Это и есть уравнения двух пересекающихся плоскостей, которые при пересечении образуют прямую, заданную с помощью уравнения x — 1 2 = y 0 = z + 2 0

Ответ: y = 0 z + 2 = 0

Прямая задана уравнениями x + 1 2 = y — 2 1 = z — 5 — 3 , найдите уравнение двух плоскостей, пересекающихся по данной прямой.

Решение

Приравниваем дроби попарно.

x + 1 2 = y — 2 1 = z — 5 — 3 ⇔ x + 1 2 = y — 2 1 x + 1 2 = z — 5 — 3 y — 2 1 = z — 5 — 3 ⇔ ⇔ 1 · ( x + 1 ) = 2 · ( y — 2 ) — 3 · ( x + 1 ) = 2 · ( z — 5 ) — 3 · ( y — 2 ) = 1 · ( z — 5 ) ⇔ x — 2 y + 5 = 0 3 x + 2 z — 7 = 0 3 y + 7 — 11 = 0

Получаем, что определитель основной матрицы полученной системы будет равен 0 :

1 — 2 0 3 0 2 0 3 1 = 1 · 0 · 1 + ( — 2 ) · 2 · 0 + 0 · 3 · 3 — 0 · 0 · 0 — 1 · 2 · 3 — ( — 2 ) · 3 · 1 = 0

Минор второго порядка нулевым при этом не будет: 1 — 2 3 0 = 1 · 0 — ( — 2 ) · 3 = 6 . Тогда мы можем принять его в качестве базисного минора.

В итоге мы можем вычислить ранг основной матрицы системы x — 2 y + 5 = 0 3 x + 2 z — 7 = 0 3 y + z — 11 = 0 . Это будет 2. Третье уравнение исключаем из расчета и получаем:

x — 2 y + 5 = 0 3 x + 2 z — 7 = 0 3 y + z — 11 = 0 ⇔ x — 2 y + 5 = 0 3 x + 2 z — 7 = 0

Ответ: x — 2 y + 5 = 0 3 x + 2 z — 7 = 0

искал способы решения но есть небольшие вопросы по ним. Заранее ОГРОМНОЕ СПАСИБО. )

|1 -3| |1 3 | Δ = 3 + 3 = 6

|-2 -3 | |-14 3| Δ₁ = -6 — 42 = -48

|1 -2 | |1 -14| Δ₂ = -14 + 2 = -12

x = Δ₁/Δ = -48/6 = -8 y = Δ₂/Δ = -12/6 = -2

Значит, некоторая точка M(-8; -2; 0) ∈ нашей прямой.

Находим направляющий вектор нашей прямой. Его можно найти как векторное произведение нормалей плоскостей.

Раскладываем определитель по правилу треугольника: -3i + 3k + 2j + 3k — 6i — j = -9i + j + 6k Тогда в качестве направляющего вектора будет вектор: n = (-9; 1; 6)

Решение задач

Для при­ме­ра решим вто­рым спо­со­бом преды­ду­щую за­да­чу. На­пи­ши­те урав­не­ние пря­мой CD, про­хо­дя­щей через две дан­ные точки  C(2; 5) и D(5; 2) .

Будем ис­кать урав­не­ние пря­мой в виде , ко­ор­ди­на­ты точек C и D удо­вле­тво­ря­ют урав­не­нию:

За­да­ча 3.

а) На­пи­ши­те урав­не­ние пря­мой MN, где M(0; 1), N(-4; -5).

б) В тре­уголь­ни­ке, об­ра­зо­ван­ном пря­мой MN и осями ко­ор­ди­нат, найти длину ме­ди­а­ны OD, про­ве­ден­ной из вер­ши­ны О(0;0).

Ре­ше­ние (рис. 11):

Рис. 11. Ил­лю­стра­ция к за­да­че

а) Урав­не­ние пря­мой будем ис­кать в виде  Под­ста­вим в урав­не­ние ко­ор­ди­на­ты точек M и N

б) Опре­де­лим ко­ор­ди­на­ты точек пе­ре­се­че­ния пря­мой с осями ко­ор­ди­нат: точка M нам из­вест­на; ко­ор­ди­на­ты точки А опре­де­лим как ко­ор­ди­на­ты точки пе­ре­се­че­ния с осью Ох из си­сте­мы (рис. 12):

Рис. 12. Ил­лю­стра­ция к за­да­че

Те­перь най­дем ко­ор­ди­на­ты точки D как се­ре­ди­ны от­рез­ка AM:

и вы­чис­лим длину от­рез­ка  OD:

Ответ: 

Решим эту же за­да­чу вто­рым спо­со­бом. Со­ста­вим урав­не­ние пря­мой, про­хо­дя­щей через точки M(0; 1) и N(-4; -5), ис­поль­зуя урав­не­ние на­клон­ной пря­мой в виде . Под­ста­вим ко­ор­ди­на­ты точек в урав­не­ние и по­лу­чим си­сте­му:

За­да­ча 4.

На­пи­ши­те урав­не­ние се­ре­дин­но­го пер­пен­ди­ку­ля­ра к от­рез­ку АВ, где А(-7; 5), В(3; -1) (рис. 13).

Рис. 13. Ил­лю­стра­ция к за­да­че

Ре­ше­ние:

В на­ча­ле этого урока мы вы­ве­ли урав­не­ние пря­мой как урав­не­ние се­ре­дин­но­го пер­пен­ди­ку­ля­ра к от­рез­ку, ис­поль­зуя то, что любая точка се­ре­дин­но­го пер­пен­ди­ку­ля­ра рав­но­уда­ле­на от его кон­цов. Если , то .

Рис. 14. Ил­лю­стра­ция к за­да­че

Рас­кро­ем скоб­ки и при­ве­дем по­доб­ные члены:

Ответ: 

Каноническое уравнение прямой на плоскости

Определение канонического уравнения — это уравнение следующего вида \.

Данное уравнение задает на плоскости в прямоугольной системе прямую линию. Она, в свою очередь проходит через точку \, которая имеет вектор направления, обозначающийся как \

Запишем несколько примеров для данного вида уравнения.

\

Приведенное уравнение — это уравнение прямой для канонического вида. Прямая его будет проходить через значения точек \. Вектор направляющий равен \.

Важные моменты, которые следует помнить, при решении задач с каноническим уравнением.

Отметим следующие важные факты:

  • если вектор является прямым и прямая линия проходит через точку, то ее уравнение имеет вид : \
  • когда вектор прямой по направлению, то любой из векторов может быть направляющим вектором прямой. И уравнение записывается следующим образом: \

Пример №1:

Прямая в системе координат проходит через точки (2;-4) и вектор направляющий равен (1;-3). Составьте и напишите каноническое уравнение, применяя известные нам данные.

\

\

Следовательно уравнение записывается следующим образом: \

\ — окончательное искомое уравнение.

Пример №2:

Составить каноническое уравнение, проходящее через точки \{2} ; \quad-\frac{1}{7}\]

Прямая является параллельной относительно оси координат.  Направляющий вектор принимается \. Учитывая значение точек, через которые проходит прямая, записываем уравнение:

\{2}}{0}=\frac{y-\left(-\frac{1}{7}\right)}{1} \Leftrightarrow \frac{x-\sqrt{2}}{0}=\frac{y+\frac{1}{7}}{1}\]

\{2}}{0}=\frac{y+\frac{1}{7}}{1}\]

Пример №3:

Составим уравнение, руководствуясь графиком, приведенным ниже.

Из рисунка видно, что прямая проходит через точки со значениями (0;3). Расположена параллельно относительно оси x (ось абсцисс). Координатный вектор \ — направляющий вектор, для данной системы.

Собрав все данные, преобразовав их. можно записать уравнение:

\

Нет времени решать самому?

Наши эксперты помогут!

Контрольная

| от 300 ₽ |

Реферат

| от 500 ₽ |

Курсовая

| от 1 000 ₽ |

Нужна помощь

Значение векторного типа

Все разновидности примеров в геометрии тесно связаны друг с другом. В качестве основы для них выступает векторное уравнение, так как именно оно следует из определённой прямой. Для примера можно рассмотреть ситуацию, когда в пространстве дана точка Y (t0, e0, x0). По условиям известно, что она принадлежит прямой. В этом случае можно провести бесконечное количество линий.

Для проведения единственной прямой следует правильно задать направление, которое определяется вектором. Для обозначения можно задействовать v (a, b, c). Символы в скобках являются координатами. Для всех точек W (s, z, m), которые расположены на конкретной прямой, можно написать логическое равенство: (s, z, m) = (t0, e0, x0) + а*v— (a, b, c).

В приведённом примере был взят символ а, который может принимать любое значение. Если попробовать умножить вектор на определённое число, то в итоге можно будет изменить не только первоначальный модуль, но и направление. Это равенство принято называть векторным уравнением для прямой в трёхмерном пространстве. Если правильно оперировать параметром а, то в итоге можно получить все точки (s, z, m), которые сформируют одну линию.

Направляющим принято называть стоящий в уравнении вектор v— (a, b, c). Длина прямой бесконечна, к тому же она не имеет чёткого направления. Все эти факторы означают, что абсолютно любой вектор, который был получен из v- при помощи умножения на действительное число, тоже будет выступать в роли направляющей для прямой.

Если нужно определиться с точкой Y (t0, e0, x0), то в качестве примера вместо неё можно задействовать произвольную точку, которая лежит на прямой. Когда приведённый пример сопоставить с двухмерной реальностью, можно будет получить следующую формулу: (s, z) = (t0, e0) + а * (a; b). Результат практически идентичен с предыдущим случаем, но только в этой ситуации применяются две координаты вместо привычных трёх для указания всех векторов и точек.

Уравнение прямой с угловым коэффициентом

Записываем уравнение вида: \;

x — значение, которое принимается, как переменное;

к — простое действительное число, является показателем углового коэффициента;

b — действительное число.

Угол наклона на плоскости в системе координат — угол, который берет свой отсчет значений от направления с положительным знаком до прямой, которая направлена против хода часовой стрелки.

Угол будут считать нулевым, если прямая линии, имеют параллельное расположение относительно оси абсцисс либо совпадает с ней по расположению. Угол принимает значения, согласно интервалу (0, \).

Формула

Угловой коэффициент — значение тангенса угла наклона этой же прямой линии.

В случае, когда прямая линия параллельная другой оси, ординат, то принято считать, что угловой коэффициент не определяется. И соответствует интервалу бесконечности.

График функции будет возрастать, если значение коэффициента имеет положительное значение. Следовательно, убывание будет наблюдаться в противоположном значение, а именно с отрицательным значением.

На графиках показаны значения угловых коэффициентов и угол наклона. Когда есть разное расположение относительно осей.

На примерах рассмотрим нахождение углового коэффициента. Для этого из прошлых тем, вспомним определение тангенса и его вычисление.

Пример №1:

Угол наклона прямой равен 120 градусов, относительно оси ох.

Нам нужно определить угловой коэффициент.

Применим известные нам формулы и подставим данные.

\

Следовательно правильный ответ задачи будет равняться \

Пример №2:

В этом примере нам уже известно значение углового коэффициента.

Нужно определить угол наклона, относительно прямой.  Для этого, нужно обязательно учитывать знак известного коэффициента. Если к>0, следует что угол будет острый и определяться как \.

Когда к<0, то угол будет характеризоваться как тупой. его значение определяется функцией: \.

Например, угловое значение равно 3.

Значение коэффициента является положительным, значит угол будет острый. Вычисляться он будет по формуле: \

Ответ задачи: \.

Пример №3:

Значение углового коэффициента имеет отрицательное число в виде дроби.  И равняется следующему значению: \

Для определения угла наклона, выполнить следующие действия: обозначим все значения. Угол наклона относительно оси имеет положительное значение. Следовательно формула для решения запишется следующим образом: \[\mathrm{k}=-\frac{1}{\sqrt{3}}

Подставим данные, которые заданы в условии задания:

\ответ будет \.

Пример №4:

Необходимо определить, относятся ли точки координат к прямой. Они равны: \. Уравнение прямой задано следующее: \.

Известные нам значения точек подставляем, в заданное уравнение прямой.

И получаем следующий вид формулы: \. Так после вычисления, мы получаем равенство, которое считается верным. Можно утверждать, что точка принадлежит прямой.

Далее подставляем значения второй точки в уравнение.

\ следовательно точка \ не относится к прямой и не лежит на ней.

Вывод решения: только первая точка относится к прямой и лежит на ней, а вторая равная (2;-2) — нет.

Пример №5:

Нужно найти уравнение прямой, которая проходит через значение точки \. Значение углового коэффициента — (-2).

Запишем условие : \

Следовательно необходимое уравнение прямой равно: \.

\

Искомое уравнение: \

Пример №6:

Составить уравнение прямой, проходящей через значение (-2;4). Угол наклона положительного направления равен \.

Решение необходимо начать с определения коэффициента угла.

\

Определив угловое значение, можно составить искомое уравнение вида: \

Урок 29. Нахождение уравнение прямой по двум точкам

Урок из серии «Геометрические алгоритмы»

Здравствуйте, дорогой читатель!

Сегодня мы начнем изучать алгоритмы, связанные с геометрией. Дело в том, что олимпиадных задач по информатике, связанных с вычислительной геометрией, достаточно много и решение таких задач часто вызывают затруднения.

За несколько уроков мы рассмотрим ряд элементарных подзадач, на которые опирается решение большинства задач вычислительной геометрии.

На этом уроке мы составим программу для нахождения уравнения прямой, проходящей через заданные две точки. Для решения геометрических задач нам понадобятся некоторые знания из вычислительной геометрии. Часть урока мы посвятим знакомству с ними.

Сведения из вычислительной геометрии

Вычислительная геометрия – это раздел информатики, изучающий алгоритмы решения геометрических задач.

Исходными данными для таких задач могут быть множество точек на плоскости, набор отрезков, многоугольник (заданный например, списком своих вершин в порядке движения по часовой стрелке) и т.п.

Результатом может быть либо ответ на какой то вопрос (типа принадлежит ли точка отрезку, пересекаются ли два отрезка, …), либо какой-то геометрический объект (например, наименьший выпуклый многоугольник, соединяющий заданные точки, площадь многоугольника, и т.п.).

Мы будем рассматривать задачи вычислительной геометрии только на плоскости и только в декартовой системе координат.

Чтобы применять методы вычислительной геометрии, необходимо геометрические образы перевести на язык чисел. Будем считать, что на плоскости задана декартова система координат, в которой направление поворота против часовой стрелки называется положительным.

Теперь геометрические объекты получают аналитическое выражение. Так, чтобы задать точку, достаточно указать её координаты: пару чисел (x; y). Отрезок можно задать, указав координаты его концов, прямую можно задать, указав координаты пары ее точек.

Но основным инструментом при решении задач у нас будут векторы. Напомню поэтому некоторые сведения о них.

Отрезок АВ, у которого точку А считают началом (точкой приложения), а точку В – концом, называют вектором АВ и обозначают либо

а

Для обозначения длины вектора (то есть длины соответствующего отрезка) будем пользоваться символом модуля (например,

Произвольный вектор

здесь точки A и B имеют координаты

Для вычислений мы будем использовать понятие ориентированного угла, то есть угла, учитывающего взаимное расположение векторов.

Ориентированный угол между векторами a и b положительный, если поворот от вектора a к вектору b совершается в положительном направлении (против часовой стрелки) и отрицательный – в другом случае. См рис.1а, рис.1б. Говорят также, что пара векторов a и b положительно (отрицательно) ориентирована.

Рис. 1а Рис. 1б

Таким образом, величина ориентированного угла зависит от порядка перечисления векторов и может принимать значения в интервале

Многие задачи вычислительной геометрии используют понятие векторного (косого или псевдоскалярного) произведений векторов.

Векторным произведением векторов a и b будем называть произведение длин этих векторов на синус угла между ними:

Векторное произведение векторов в координатах:

Выражение справа — определитель второго порядка:

В отличии от определения, которое дается в аналитической геометрии, это скаляр.

Знак векторного произведения определяет положение векторов друг относительно друга:

Если величина

ab

Если величина

ab

Векторное произведение ненулевых векторов равно нулю тогда и только тогда, когда они коллинеарны (

Рассмотрим несколько простейших задач, необходимых при решении более сложных.

Уравнение прямой

Определим уравнение прямой по координатам двух точек.

Уравнение прямой, проходящей через две различные точки, заданные своими координатами.

Пусть на прямой заданы две не совпадающие точки:

С помощью векторного произведения условие коллинеарности векторов

(y2-y1)x + (x1-x2)y + x1(y1-y2) + y1(x2-x1) = 0

Последнее уравнение перепишем следующим образом:

Итак, прямую можно задать уравнением вида (1).

Задача 1. Заданы координаты двух точек. Найти её представление в виде ax + by + c = 0.

На этом уроке мы познакомились с некоторыми сведениями из вычислительной геометрии. Решили задачу по нахождению уравнения линии по координатам двух точек.

На следующем уроке составим программу для нахождения точки пересечения двух линий, заданных своими уравнениями.

Источник статьи: http://gospodaretsva.com/urok-29-naxozhdenie-uravnenie-pryamoj-po-dvum-tochkam.html

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Курс на развитие
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: