Треугольник

Содержание

  1. Определения
  2. Пример решения задачи
  3. Что мы узнали?

Бонус

  • Тест по теме
  • Площадь прямоугольного треугольника
  • Высота треугольника
  • Площадь правильного треугольника
  • Площадь прямого треугольника
  • Площадь равностороннего треугольника
  • Площадь равнобедренного треугольника
  • Медиана треугольника
  • Правильный треугольник Тупоугольный треугольник
  • Остроугольный треугольник
  • Свойства прямоугольного треугольника
  • Стороны прямоугольного треугольника
  • Средняя линия прямоугольного треугольника
  • Признаки подобия прямоугольных треугольников
  • Высота равностороннего треугольника
  • Медиана равностороннего треугольника
  • Неравенство треугольника
  • Длина медианы правильного треугольника
  • Равнобедренный тупоугольный треугольник
  • Средняя линия прямоугольного треугольника
  • Длина средней линии треугольника

показать все

По многочисленным просьбам теперь можно: сохранять все свои результаты, получать баллы и участвовать в общем рейтинге.

  1. 1. Михаил Тяпин 214
  2. 2. Наталия Дробот 198
  3. 3. Мария Кауфман 192
  4. 4. Игорь Проскуренко 157
  5. 5. Соня Зверева 153
  6. 6. Василиса Варавкина 119
  7. 7. Иоанн Стефановский 107
  8. 8. Софья Холена 94
  9. 9. Оля Проскурина 85
  10. 10. Татьяна Бежина 83
  1. 1. Мария Николаевна 13,500
  2. 2. Лариса Самодурова 12,695
  3. 3. Liza 12,310
  4. 4. Кристина Волосочева 11,445
  5. 5. TorkMen 11,441
  6. 6. Ekaterina 11,176
  7. 7. Влад Лубенков 11,100
  8. 8. Лиса 11,070
  9. 9. Юлия Бронникова 11,060
  10. 10. Вячеслав 10,840

Самые активные участники недели:

  • 1. Виктория Нойманн — подарочная карта книжного магазина на 500 рублей.
  • 2. Bulat Sadykov — подарочная карта книжного магазина на 500 рублей.
  • 3. Дарья Волкова — подарочная карта книжного магазина на 500 рублей.

Три счастливчика, которые прошли хотя бы 1 тест:

  • 1. Наталья Старостина — подарочная карта книжного магазина на 500 рублей.
  • 2. Николай З — подарочная карта книжного магазина на 500 рублей.
  • 3. Давид Мельников — подарочная карта книжного магазина на 500 рублей.

Карты электронные(код), они будут отправлены в ближайшие дни сообщением Вконтакте или электронным письмом.

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На этом уроке мы рассмотрим виды треугольников и научимся строить прямоугольный треугольник на нелинованной бумаге. Вначале вспомним определение треугольника и его элементы, какие существуют виды углов, узнаем, как на нелинованной бумаге построить прямой угол. Далее узнаем, как делятся треугольники на виды в зависимости от типа углов в них. Рассмотрим несколько задач на нахождение вида треугольников и на построение

Неравенство треугольника

Следующая важная теорема называется неравенством треугольника:

Попробуем доказать неравенство треугольника. Возьмем произвольный ∆АВС и покажем, что сторона АВ меньше, чем величина ВС + АС. Для этого «дорисуем» к отрезку АС ещё один отрезок СD, равный BC, при этом АС и СD должны лежать на одной прямой:

Так как AD = АС + СD, то нам достаточно показать, что АВ <AD. Ясно, что ∆ВСD является рав-бедр., ведь ВС = СD. Это значит, что

Получается, что в ∆АВD сторона АВ лежит против меньшего угла по сравнению со стороной АD. Значит, эта сторона должна быть меньше АD, что мы и пытаемся доказать.

Доказанная теорема означает, что не всякий треуг-к можно построить по его сторонам. Так, у нас никогда не получится построить треуг-к, у которого стороны равны 2, 3 и 7 см, так как одна из этих длин больше, чем сумма двух других:

7 > 2 + 3

Верно обратное утверждение – если все заданные длины удовлетворяют неравенству, то треуг-к построить можно.

Задание. Известны две стороны равнобедренного треугольника, они равны 25 и 10 см. Какая из них является основанием?

Решение. Рассмотрим сперва случай, когда основание равно 25 см. Тогда две другие стороны имеют длину 10 см. Их сумма (10 см + 10 см = 20 см) меньше основания. Такая ситуация невозможно из-за неравенства треуг-ка.

Ситуация же, при которой основание имеет длину 10 см, вполне допустима. Тогда две другие стороны равны 25 см, и для каждой стороны неравенство треуг-ка выполняется:

Биссектриса треугольника

Биссектриса или биссéктор треугольника — это отрезок, соединяющий вершину угла треугольника с основания вершины и делящий этот угол пополам.

Точка, образованная пересечением биссектрис называется инцентромом.

Для того чтобы измерить угол треугольника и разбить его пополам, тебе понадобится специальная линейка — транспортир. У этой линейки есть шкала, показывающая угловую меру в градусах от центральной точки линейки.

Сопоставь центральную точку линейки с вершиной так, чтобы одна сторона треугольника совпадала с основанием линейки. Найди, на какую цифру, на шкале линейки, указывает вторая сторона вершины, если ее продлить в длину. Поставь точки у значения 0 и там, где мы измерили. Обознач эти точки как A и B.

Проведи отрезок через эти точки. Визуально или с помощью линейки найди середину этого отрезка и обозначь ее как точку C. На линии, проходящей из вершины к точке C, будет лежать наша биссектриса. Повтори все действия для каждой вершины треугольника.

Классификация треугольников по углам

Остроугольный треугольник

Остроугольный треугольник — это треугольник, у которого все углы острые, то есть от 0° до 90°, где 0° и 90° не входят в эти рамки.

Тупоугольный треугольник

Тупоугольный треугольник — это треугольник, у которого один угол тупой, то есть от 90° до 180°, где 90° и 180° не входят в эти рамки.

Прямоугольный треугольник

Прямоугольный треугольник — это треугольник, у которого один угол прямой, то есть равен 90°.

Две стороны образующие прямой угол называются катетами, а сторона, противоположная прямому углу, называется гипотенузой. На рисунке угол α = 90°, сторона a и b — катеты, с — гипотенуза.

В древнии времена, чтобы измерить прямой угол, равный 90°, применяли веревку, которая делилась на равные 12 частей. Концы веревки связывали вместе. Для того чтобы получить прямой угол, необходимо было взять веревку за деления в пропорциях 3, 4 и 5. Получался треугольник у которого один угол был прямым. Этот способ широко использовался в строительсве. Даже есть упоминания этого метода в строительстве египетских пирамид. Может быть поэтому этот треугольник принято называть египетским треугольником.

Описанная окружность треугольника

Окружность, проходящая по всем вершинам треугольника, называется описанной окружностью. Любой треугольник может быть описан единственной окружностью.

Центр описанной окружности — это точка пересечения перпендикуляров оснований, проходящих через середину основания.

На рисунке хорошо видно, как из середины оснований мы провели перпендикуляры и нашли точку пересечения. С помощью штангенциркуля выставляем радиус от центра до любой вершины и круговым движением рисуем описанную окружность.

У прямоугольного треугольника центр описанной окружности лежит на середине гипотенузы.

Найди на рисунке треугольник, который одновременно прямоугольный и равнобедренный.

Неравенство треугольника

Следующий факт касается не углов, а сторон треугольника.

Это означает, что:

  • \( a+b>c\)
  • \( a+c>b\)
  • \( b+c>a\)

Ты уже догадался, почему этот факт называется неравенством треугольника?

Ну вот, а где же это неравенство треугольника может оказаться полезным?

А представь, что у тебя есть три друга: Коля, Петя и Сергей.

И вот, Коля говорит: «От моего дома до Петиного \( 100\) м по прямой». А Петя: «От моего дома до дома Сергея \( 200\) метров по прямой». А Сергей: «Вам хорошо, а от моего дома до Колиного аж \( 500\) м по прямой».

Ну, тут уже ты должен сказать: «Стоп, стоп! Кто – то из вас говорит неправду!»

Так не может быть!

Почему?

Да потому что если от Коли до Пети \( 100\) м, а от Пети до Сергея \( 200\) м, то от Коли до Сергея точно должно быть меньше \( 300\) (\( =100+200\)) метров – иначе и нарушается то самое неравенство треугольника.

Ну и здравый смысл точно, естественно, нарушается: ведь всякому с детства неизвестно, что путь до прямой (\( КС\)) должен быть короче, чем путь с заходом в точку \( П\). (\( К-П-С\)).

Так что неравенство треугольника просто отражает этот общеизвестный факт. Ну вот, ты теперь знаешь, как отвечать на такой, скажем, вопрос:

Бывает ли треугольник со сторонами \( 1,3,7\)?

Ты должен проверить, правда ли, что любые два числа из этих трёх в сумме больше третьего. Проверяем: \( 1+3<7\), значит, треугольника со сторонами \( 1,3\) и \( 7\) не бывает! А вот со сторонами \( 2,4,5\) – бывает, потому что

Окружность, вписанная в треугольник

Окружность, касающаяся всех трех сторон треугольника, называется вписанной окружностью. Только одна окружность может быть вписана в любой треугольник.

Центром пересечения биссектрис, как мы знаем, является инцентром. Инцентром еще называют центром вписанной окружности. Если от инцентрома до любого основания измерить расстояние по перпендикуляру, то мы получим радиус вписанной окружности.

Для того, чтобы вписать окружность в треугольник тебе, понадобится циркуль. Выставь циркуль в инцентром и установи радиус равный расстоянию до любого основанию по перпендикуляру. Круговым движением нарисуй окружность.

Равенство треугольников

Ну вот, а если не один, а два или больше треугольников. Как проверишь, равны ли они? Вообще-то по определению:

Но…это ужасно неудобное определение! Как, скажите на милость, накладывать два треугольника хотя бы даже в тетради?!

Но на наше счастье есть признаки равенства треугольников, которые позволяют действовать умом, не подвергая риску тетрадки.

Да и к тому же, отбросив легкомысленные шуточки, открою тебе секрет: для математика слово «наложить треугольники» означает вовсе не вырезать их и наложить, а сказать много-много-много слов, которые будeт доказывать, что два треугольника совпадут при наложении.

Так что ни в коем случае нельзя в работе писать «я проверил – треугольники совпадают при наложении» – тебе это не засчитают, и будут правы, потому что никто не гарантирует, что ты при наложении не ошибся, скажем, на четверть миллиметра.

Основные линии

Зачастую школьникам мало знать только то, как должны выглядеть те или иные фигуры. Они не могут ограничиться лишь информацией о том, какой треугольник тупоугольный, а какой прямоугольный. Курсом математики предусмотрено, что их знания об основных особенностях фигур должны быть более полными.

Так, каждому школьнику должно быть понятно определение биссектрисы, медианы, серединного перпендикуляра и высоты. Кроме того, он должен знать и их основные свойства.

Так, биссектрисы делят угол пополам, а противоположную сторону — на отрезки, которые пропорциональны прилегающим сторонам.

Медиана делит любой треугольник на два равных по площади. В точке, в которой они пересекаются, каждая из них разбивается на 2 отрезка в пропорции 2: 1, если смотреть от вершины, из которой она вышла. При этом большая медиана всегда проведена к его наименьшей стороне.

Не меньше внимания уделяется и высоте. Это перпендикуляр к противоположной от угла стороне. Высота тупоугольного треугольника имеет свои особенности. Если она проведена из острой вершины, то она попадает не на сторону этого простейшего многоугольника, а на ее продолжение.

Серединный перпендикуляр — это отрезок, который выходит из центра грани треугольника. При этом он расположен к ней под прямым углом.

Равенство треугольников

Теорема 19. Два треугольника равны, если три стороны одного соответственно равны трем сторонам другого.

Дано. В двух треугольниках ABC и DEF (черт. 43) стороны равны

AB = DE, BC = EF, AC = DF

Требуется доказать, что ABC = DEF.

Доказательство. Наложим треугольник DEF на треугольник ABC, сторону DF на сторону AC точкой D на точку A. По равенству сторон AC и DF точка F упадет на точку C.

Чтобы доказать, что точка E упадет на точку B докажем, что она не может упасть ни внутри, ни вне, ни на одну из сторон треугольника.

a) Положим, что точка E упадет внутри треугольника в точку E’, тогда треугольник DEF примет положение треугольника AE’C, DE займет положение линии AE’ и EF положение линии E’C, следовательно,

AE’ = DE, E’C = EF.

Линия ABC, будучи внешней ломаной, больше линии AE’C внутренней ломаной, следовательно,

AB + BC > AE’ + E’C

Заменяя AE’ и E’C равными им сторонами DE и EF, имеем:

AB + BC > DE + EF,

но AB = DE, следовательно, BC > EF, что противоречит данным условиям. Итак, точка E не может упасть внутри треугольника.

b) Положим, точка E упала вне треугольника в точку E». В этом случае ∆AE»C = ∆DEF и тогда

AE» = DE, CE» = EF

Обозначим букой O точку пересечения линий AE» и BC. Из чертежа видно, что

AO + BO > AB
CO + OE» > E»C

Сложив эти неравенства, имеем:

AO + BO + CO + OE» > AB + E»C

Так как BO + CO = BC, AO + OE» = AE», то

BC + AE» > AB + CE»

Здесь AE» = DE, CE» = EF, следовательно,

BC + DE > AB + EF

но AB = DE.

Вычтя по равной величине из обоих частей последнего неравенства, получаем:

BC > EF

что противоречит данным условиям. Итак, точка E не может упасть вне треугольника.

c) Точка E не может упасть на одну из сторон треугольника в точку E»’, ибо стороны DC и AB равны. Точно также если бы E упала в точку O, то выходило бы, что BC > OC, но OC = EF, следовательно, BC > EF, что противоречит условию.

Итак, точка E должна непременно упасть в точку B, следовательно, при наложении сторона DE совпадет со стороной AB, а сторона EF со стороной BC и треугольник DEF с треугольником ABC.

Из равенства треугольников следует, что все остальные части их равны, т. е.

A = ∠D, ∠B = ∠E, ∠C = ∠F.

Теорема 20. Два треугольника равны, когда они имеют по равному углу, содержащемуся между равными сторонами.

Дано. В двух треугольниках ABC и DEF (черт. 44)

AB = DE, AD = DF, ∠BAC = ∠EDF

Требуется доказать, что ∆ABC = ∆DEF.

Примечание. Иногда указывают равные части на чертеже, отмечая их одинаковыми значками.

Доказательство. Наложим треугольник DEF на треугольник ABC, сторону DF на сторону AC, точкой D на точку A; тогда по равенству линий DF и AC точка F упадет в точку C и по равенству углов A и D линия DE пойдет по линии AB; по равенству линий DE и AB точка E упадет на точку B. Если E и F две точки линии EF совпали с B и C двумя точками линии BC, то и вся линия EF совпадет с линией BC, и треугольник DEF совпадет с треугольником ABC. Отсюда следует, что и все остальные части треугольников равны, т. е.

BC = EF, ∠B = ∠E, ∠C = ∠F.

Теорема 21. Два треугольника равны, если сторона и два лежащие на ней угла одного равны стороне и двум лежащим на ней углам другого треугольника.

Дано. В треугольниках ABC и DEF (черт. 44)

A = ∠D, ∠C = ∠F, AC = DF

Требуется доказать, что ∆ABC = ∆DEF.

Доказательство. Наложим треугольник DEF на треугольник ABC, стороной DF на AC, точкой D на A, тогда по равенству сторон AC и DF точка F упадет на точку C. По равенству углов A и D линия DE пойдет по линии AB и по равенству углов C и F линия FE пойдет по линии CB. Так как линия FE и DE совпадут с линиями CB и AB, то и точка E непременно совпадет с точкой B, ибо две прямые линии пересекаются в одной точке, следовательно два треугольника равны (ЧТД).

Из того, что равные треугольники совмещаются при наложении всеми своими частями вытекает следствие. В равных треугольниках против равных сторон лежат равные углы и наоборот.

Соответственные части треугольников. В двух равных треугольниках равные углы и равные стороны называются соответственными углами и сторонами.

Виды треугольников по сторонам

Определение. Треугольник, у которого все три стороны разной длины называется разносторонним треугольником.

Определение. Треугольник, у которого две стороны равной длины, называется равнобедренным треугольником.

Определение. Треугольник с тремя равными сторонами называется равносторонним треугольником.

— А как еще различают треугольники? — задал новый вопрос Бим. — Вот у этих трех конфет все углы острые, а они все равно разные!

Бим взял конфеты и приложил по очереди одну конфету к другой:

— У каждой конфеты есть по одной одинаковой стороне. Но они разные. Как такое может быть?

— Значит другие стороны у них не будут одинаковыми, — нашлась Оля.

Оля достала еще один листочек и измерила у первой конфеты все три стороны:

— У первой конфеты все стороны разной длины. Выходит, конфета имеет вид треугольника с разными сторонами. Треугольник, у которого все стороны разной длины, называется разносторонним треугольником.

Тут у вас еще много конфет. — вмешался Коля. — Вот еще конфета с прямым углом и со сторонами разной длины.

А вот конфета с тупым углом, а стороны у нее все разные, — продолжил Вася.

Бим измерил стороны второй конфеты из трех, которые он взял.

— А у этой конфеты две стороны одинаковой длины, а у третьей стороны другая длина!

— Эта конфета имеет вид равнобедренного треугольника, — ответил Вася. — Треугольник, у которого две стороны имеют одинаковую длину, называется равнобедренным.

— И у прямоугольного треугольника могут быть две стороны одинаковые, и он тоже будет называться равнобедренным, — дополнила Оля.

— И у тупоугольного треугольника могут быть две стороны равными, и он тоже будет называться равнобедренным, — закончил перечисление Коля.

Бом измерил стороны третьей конфеты, которую взял Бим.

— А у этой конфеты все стороны одинаковой длины.

— Такой треугольник называется равносторонним, — объяснил Коля. — У него равны все стороны и все углы.

И тут зазвенел первый звонок.

— Ребята, пожалуйста, проходите в цирк, — пригласил Бом. — Уже скоро представление. Пойдем, Бим, и мы готовиться к выходу на арену.

— Сейчас бегу! — поспешно крикнул Бим. — Только для ребят запишу вопросы. И чтобы мне не опоздать, попросим ребят записать на них ответы.

Теорема о сумме углов треугольника

Если один угол треугольника становится больше, остальные углы «сжимаются». Выражаясь метафорично, треугольник — это фигура жесткой сцепки.

Отсюда и создается впечатление, что сумма углов треугольника будто бы всегда одна и та же, вне зависимости от того, сколько какому углу построением отмерено градусов.

А еще внимательный читатель мог заметить, что равенство накрест лежащих углов при параллельных и сумма односторонних углов в $180^\circ$, если крепко призадуматься, подает сигнал в том числе: сумма углов треугольника, скорее всего, также равняется $180^\circ$.

Нам остается проверить данные наблюдения и доказать их:

Доказательство

Начертим произвольный треугольник $\bigtriangleup{ABC}$. Расположим его на чертеже боковой стороной $AB$, а на основании $BC$ отметим середину — точку $O$. Продолжим медиану $AO$ от основания и отложим равный медиане отрезок $OA_1$.

Рассмотрим треугольники $\bigtriangleup{ABO}$ и $\bigtriangleup{OA_{1}C}$. Треугольники равны по первому признаку: $AO=OA_1$, $BO=OC$, углы $\angle{BOA}$ и $\angle{A_{1}OC}$ равны как вертикальные. Из равенства треугольников следует, что $\angle{ABC}=\angle{A_{1}CB}$.

Заметим, что $\angle{ABC}$ и $\angle{A_{1}CB}$ — накрест лежащие углы при отрезках $AB$ и $CA_1$ и секущей $CB$. Следовательно $AB\parallel{CA_1}$.

Рассмотреть эти же отрезки можно при секущей $CA$. Раз отрезки параллельны, то сумма односторонних углов $\angle{A}$ и $\angle{A_{1}CA}$ равна $180^\circ$. Поскольку накрест лежащие $\angle{ABC}$ и $\angle{A_{1}CB}$ равны, а $\angle{A_{1}CA}=\angle{ACB}+\angle{ABC}$, то выходит:

$$\angle{A}+\angle{A_{1}CA}=180^\circ\\\angle{A}+\angle{ABC}+\angle{ACB}=180^\circ$$

Это и есть сумма углов треугольника $\bigtriangleup{ABC}$. Теорема доказана.

{"questions":}

Сумма углов треугольника: комментарий к доказательству

Совершенно нормальный вопрос при изучении геометрии: «Почему именно такой нестандартный чертеж?! Боковой стороной?»

Располагать треугольник на чертеже боковой стороной — нетипичная практика. Обычно мы рисуем эту фигуру по принципу его геометрического значка — $\bigtriangleup$. Однако допустите мысль, что теоремы об углах при параллельных таки навели вас на мысли, чему может равняться сумма углов треугольника. Что бы вы сделали первым делом при чертеже к доказательству?

Расположили бы треугольник таким образом, чтобы его стороны «играли роль» потенциальных секущих, а третья сторона —  «роль» одной из возможных параллельных прямых.

Так что подобный чертеж — попытка сразу «подогнать» ситуацию к удобному графическому использованию уже ранее доказанных теорем. Это — геометрическая сноровка. Так что не переживайте, если иногда кажется, что IQ рисовавшего чертеж уж слишком переваливает за 300… Сноровка вырабатывается со временем. Практикуйтесь и вы сможете так же!

Следствие из теоремы о сумме углов треугольника

Напомним, что острым считается угол меньше $90^\circ$. Исходя из того, что сумма углов треугольника — всегда $180^\circ$, логично заключить невозможность наличия в треугольнике двух тупых углов. Сумма двух тупых углов всегда больше $180^\circ$. А это противоречит теореме о сумме углов треугольника.

{"questions":[{"content":"`image-12` Если помните, следствия, как и теоремы, все-таки требуют доказательства. Вдруг мы вынесли ложное умозаключение? Следствие мы, да, только что доказали, но очень нестрого, практически «на пальцах». Ниже приведено строгое доказательство следствия из теоремы о сумме углов треугольника. Ваша задача в качестве практики — восстановить порядок положений доказательства.   `sorter-1`","widgets":{"sorter-1":{"type":"sorter","items":},"image-12":{"type":"image","url":"https://obrazavr.ru/wp-content/uploads/2022/04/oh-1.svg","width":"300"}}}]}

Виды треугольников:

(по величине углов)

Остроугольный треугольник – это треугольник, в котором все три угла острые, т.е. меньше 90°.

Прямоугольный треугольник – это треугольник, содержащий прямой угол.

Две стороны, образующие прямой угол, называются катетами (АС и АВ), а сторона, противолежащая прямому углу, называется гипотенузой (ВС).

Тупоугольный треугольник – это треугольник, содержащий тупой угол, т.е. один из его углов лежит в пределах между 90° и 180°.

(по числу равных сторон)

(по соотношению сторон)

Равносторонний (правильный) треугольник – это треугольник, у которого все стороны и все углы равны (каждый угол равен 60°).

Равнобедренный тругольник – это треугольник, у которого два угла и две стороны равны.

Разносторонний треугольник – это треугольник, в котором все углы, а значит и все стороны попарно различны.

(Разносторонний треугольник может быть остроугольным, прямоугольным и тупоугольным).

Рассмотрим рис. ниже.

Углы α, β, γ нызываются внутренними углами треугольника.

Угол Θ – называется внешним углом треугольника, он равен сумме двух противолежащих ему внутренних углов, т.е. Θ= β+γ

(а+с+b) – периметр треугольника.

Угол α, называется смежным по отношению к углу Θ. ( α+ Θ)=180° (развернутый угол)

Основные свойства треугольников. В любом треугольнике:

Против большей стороны лежит больший угол, и наоборот.

Против равных сторон лежат равные углы, и наоборот. (В частности, все углы в равностороннем треугольнике равны.)

Сумма углов треугольника равна 180 ° (Из двух последних свойств следует, что каждый угол в равностороннем треугольнике равен 60 °).

Продолжая одну из сторон треугольника (AВ), получаем внешний угол Θ.

Любая сторона треугольника меньше суммы двух других сторон и больше их разности:

  • a b – c;
  • b a – c;
  • c a – b.
  • Треугольник
  • Обозначения в треугольнике
  • Виды треугольников
  • Основные свойства треугольников
  • Конгруэнтные (равные) треугольники
  • Признаки равенства треугольников
  • Признаки равенства прямоугольных треугольников
  • Подобные треугольники
  • Признаки подобия треугольников
  • Свойства подобных треугольников
  • Подобие в прямоугольных треугольниках
  • Теорема Пифагора
  • Теорема синусов
  • Теорема косинусов
  • Медиана
  • Биссектриса
  • Высота треугольника
  • Срединный перпендикуляр
  • Средняя линия треугольника
  • Формулы площади треугольника, в т.ч. Герона
  • Окружности вписанные в треугольники и описанные вокруг треугольников.

Урок математики в 3 классе. Тема: Тупоугольный треугольник

Цели:

– познакомить учащихся с тупоугольным треугольником; научить строить тупоугольный треугольник;

– развивать логическое мышление, навык работы с чертёжными инструментами, глазомер;

– воспитывать интерес к предмету, аккуратность, коммуникативные способности.

Ход урока

I. Организационный момент.

Учитель. Все ли готовы к уроку? Всё ли на рабочем месте: учебник, тетради, ручка, чертёжные принадлежности? Тогда можно начинать урок.

II. Психологический настрой учащихся.

Учитель. Посмотрите на изображение смайлика. Какое у него настроение? Хочется, чтобы у вас было такое же на протяжении всего урока.

III. Актуализация опорных знаний.

Учитель. Среди данных треугольников найдите прямоугольные.

Учащиеся показывают прямоугольные треугольники.

Учитель. Можете сказать, как называются остальные треугольники?

IV. Сообщение целей урока.

Если учащиеся называют данный вид треугольников, то самостоятельно формулируют тему урока.

Учитель. Сегодня на уроке познакомитесь с тупоугольными треугольниками, научитесь их строить.

V. Организация восприятия и осмысления новой информации.

Задание 1. Из данных углов выбрать тупые углы и назвать их номера.

Задание выполняется устно.

Задание 2. Что общего у треугольников, изображённых на рисунке?

Учащиеся без труда находят общее свойство изображённых треугольников, затем читают правило по учебнику.

Треугольники, у которых есть тупой угол, называются ТУПОУГОЛЬНЫМИ.

VI. Первичная проверка понимания.

Задание. Выполнить алгоритм.

1. Постройте тупой угол у себя в тетради.

2. Отметьте на каждой стороне угла по одной точке.

3. Соедините эти точки отрезком.

4. Закрасьте получившийся треугольник. Какой треугольник у вас получился?

Учащиеся, выполнив алгоритм, отвечают, что получился ТУПОУГОЛЬНЫЙ треугольник.

Учитель. Чем тупоугольный треугольник отличается от прямоугольного?

Учащиеся сравнивают два вида треугольников и делают вывод.

VII. Организация усвоения способов деятельности.

Задание 1. Какой треугольник изображён на первом рисунке? На какие два треугольника разбит тупоугольный треугольник на втором рисунке?

Задание выполняется устно в парах. Задание 2 (выполняется по вариантам).

I вариант. Построить тупоугольный треугольник со сторонами 4 см и 5 см.

II вариант. Построить тупоугольный треугольник, у которого две стороны равны.

Проверка осуществляется у доски.

VIII. Контроль за результатами учебной деятельности.

Задание. Из данных треугольников заштриховать те, которые являются тупоугольными. Отметить с помощью дуги тупой угол в каждом из них.

Самостоятельная работа. Взаимопроверка осуществляется по образцу.

IX. Рефлексия деятельности.

Учитель. Что нового узнали на уроке?

— Чему научились?

— Какие задания вам понравились?

— Что вызвало у вас затруднение?

— Над чем необходимо ещё работать? Какую задачу поставим на следующий урок?

— Оцените активность учащихся всего класса.

— Покажите мимикой и жестами настроение, с которым вы 

Домашнее задание: построить тупоугольный треугольник со сторонами 3 и 4 сантиметра, отметить с помощью дуги тупой угол.

Решение задач на построение треугольника по трем элементам

Существует несколько сторон треугольника BC, в которых соприкасаются углы ߋ альфа и окклюзия. Необходимо построить треугольник из трех известных элементов.

Предположим, что углы треугольника ABC соответствуют следующим условиям

План действий может быть составлен по стандартному алгоритму.

  1. Построить прямую а и отмерить на ней отрезок ВС.
  2. Начертить угол К с вершиной В на стороне ВС.
  3. Изобразить угол М с вершиной С на стороне ВС.
  4. На пересечении лучей изображенных углов получить точку А, соединить ее с точками С и В для получения отрезков АС и АВ.

В процессе доказательства рассмотрим изображение треугольника. Можно сделать вывод, что данные условия соблюдены. Указанный угол также можно провести в обратном направлении, поэтому второй треугольник можно изобразить соответствующим образом. Однако из-за сходства с первым можно сделать вывод, что существует только одно решение проблемы. Если углы ዄ alpha и ዅ b равны более 180 градусов, то задача не имеет решения.

Даны три стороны треугольника AB, AC и BC. Треугольник должен быть построен.

Проанализировав условия проблемы, можно создать план решения.

  1. Начертить прямую а и отметить на ней отрезок АВ.
  2. Используя циркуль, изобразить пару окружностей. Одна из них имеет радиус АС и центр в точке А, а вторая — радиус ВС и центр в точке В.
  3. Точку, где пересекаются данные окружности, можно обозначить С. Далее следует соединить точку С с точками А и В. В результате получаются отрезки АС и ВС.
  4. Затем остается построить треугольник.

Полученная геометрия соответствует условиям задачи. Нарисованная окружность имеет два пересечения, которые могут создать еще один треугольник. Как и в первом случае, проблема имеет единственное решение. Поскольку сумма сторон треугольника всегда больше его третьей стороны, задача не имеет решения, если это условие не выполняется на этих сторонах.

Треугольник имеет две стороны AB и AC и угол ⌘alpha между ними. Треугольник должен быть спроектирован.

Процедура выполняется следующим образом.

  • начертить прямую а, отметить отрезок АВ;
  • отмерить угол МАВ, соответствующий углу \alpha;
  • отложить отрезок АС на прямой АМ;
  • начертить третью сторону треугольника СВ, соединив точки В и С.

В результате получается треугольник:.

По нарисованной геометрической фигуре можно сделать вывод, что условия работы соблюдены. Ряд A бесконечен. Это позволяет конструировать множество подобных треугольников. Предположив, что все они одинаковы, сделаем вывод, что существует только одно решение проблемы. Если угол ⌘ alpha больше 180 градусов, то задача не имеет ответа, так как сумма всех углов треугольников должна быть равна 180 градусов.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Курс на развитие
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: