Что там про высшую математику?
Проблема разрешена, нюансы учтены, точки расставлены, все прояснилось — ответом для примера с делением на ноль не может быть ни одно число. Такие задачки решать — дело безнадежное и невозможное. А значит… интересное! Дубль два.
Пример 3.
Придумать, как разделить 1000 на 0.
А никак. Зато 1000 можно без трудностей делить на другие числа. Ну, давайте хотя бы делать, что получается, пусть даже изменив поставленную задачу. А там, глядишь, увлечемся, и ответ сам собой объявится. Забываем на минуту про ноль и делим на сто:
Сотня далека от нуля. Сделаем шаг к нему, уменьшив делитель:
1000: 25 = 40,
1000: 20 = 50,
1000: 10 = 100,
1000: 8 = 125,
1000: 5 = 200,
1000: 4 = 250,
1000: 2 = 500,
1000: 1 = 1000.
Очевидная динамика: чем ближе делитель к нулю, тем больше частное. Тенденцию можно наблюдать и дальше, переходя к дробям и продолжая уменьшать числитель:
Осталось заметить, что к нулю мы можем подойти как угодно близко, делая частное сколь угодно большим.
В этом процессе нет нуля и нет последнего частного. Мы обозначили движение к ним, заменив число на последовательность, сходящуюся к интересующему нас числу:
При этом подразумевается аналогичная замена и для делимого:
1000 { 1000, 1000, 1000,… }
Стрелки не зря поставлены двусторонними: некоторые последовательности могут сходиться к числам. Тогда мы можем поставить в соответствие последовательности ее числовой предел.
Посмотрим на последовательность частных:
Она растет неограниченно, не стремясь ни к какому числу и превосходя любое. Математики добавляют к числам символ∞, чтобы иметь возможность рядом с такой последовательностью поставить двустороннюю стрелку:
Сопоставление числам последовательностей, имеющих предел, позволяет предложить решение к третьему примеру:
При поэлементном делении последовательности, сходящейся к 1000, на последовательность из положительных чисел, сходящуюся к 0, получим последовательность, сходящуюся к ∞.
Целесообразность попыток
Среди учеников довольно часто на первых порах освоения учебного материала встречаются попытки число умножить на 0. Подобное действие является грубейшей ошибкой.
По существу от таких попыток ничего не произойдет, но и пользы не будет. Если произвести умножение на нулевое значение, то получится в дневнике неудовлетворительная отметка.
Единственная мысль, которая должна возникать при умножении на пустоту, – невозможность действия. Запоминание в данном случае играет немаловажную роль. Выучив правило раз и навсегда, учащийся предотвращает появление спорных ситуаций.
В качестве примера, применяемого при умножении на нулевое значение, разрешается использовать следующую ситуацию. Саша решила купить яблоки. Пока она была в супермаркете, она остановила выбор на 5 крупных спелых яблоках. Сходив в отдел молочной продукции, она посчитала, что этого ей будет недостаточно. Девочка положила к себе в корзину еще 5 штук.
Поразмыслив еще чуть-чуть, она взяла еще 5. В результате на кассе у Саши получилось: 5 * 3 = 5 + 5 + 5 = 15 яблок. Если бы она положила по 5 яблок только 2 раза, то было бы 5 * 2 = 5 + 5 = 10. В том случае, если бы Саша не положила в корзинку ни разу по 5 яблок, было бы 5 * 0 = 0 + 0 + 0 + 0 + 0 = 0. Иными словами, купить яблоки 0 раз значит не купить ни одного.
Класс:
3
Деление на ноль и высшая математика
Школьная арифметика основывалась преимущественно на проведении математических операций с вещественными числами. Большая их часть имеет целый ряд аксиом:
- коммутативность и ассоциативность сложения и умножения;
- существование 0 и 1;
- существование обратного и противоположного элементов.
Кроме этого для вычисления их свойств применяют еще 2 аксиомы – порядка и непрерывности. Так как деление – это процедура противоположная умножению, то при ее проведении возникает 2 проблемы.
Проблема первая – если провести деление на 0, то полученный результат не будет возможности проверить при помощи умножения. Каким бы числом не выступало частное, если его умножить на 0, то делимое все-равно не выйдет получить.
Проблема вторая – если разделить 0 на 0, в итого ответом может выступать любая цифра, которая в случае перемножения с делителем станет нулем.
Все это стало причиной табу в школьной программе на такую операцию, как деление на 0. Но в высшей математике есть возможность его обойти. Например, если построить другую алгебраическую структуру, которая будет отличаться от привычной нам числовой прямой. Примером может служить колесо. У него иные правила и законы. Одним из них является следующий – деление никаким образом не привязано к умножению и трансформируется из бинарной операции в унарную.
Делить на 0 в высшей математике можно, но для этого потребуется выйти за рамки привычного представления о законах и операциях в алгебре.
Деление
Из всего вышеперечисленного вытекает и другое важное правило:
Это правило нам тоже с самого детства упорно вбивают в голову. Мы просто знаем, что нельзя и всё, не забивая себе голову лишней информацией. Если вам неожиданно зададут вопрос, по какой причине запрещено делить на ноль, то большинство растеряется и не сможет внятно ответить на простейший вопрос из школьной программы, потому что вокруг этого правила не ходит столько споров и противоречий.
Все просто зазубрили правило и не делят на ноль, не подозревая, что ответ кроется на поверхности. Сложение, умножение, деление и вычитание — неравноправны, полноценны из перечисленного только умножение и сложение, а все остальные манипуляции с числами строятся из них. То есть запись 10: 2 является сокращением уравнения 2 * х = 10. Значит, запись 10: 0 такое же сокращение от 0 * х = 10. Получается, что деление на ноль — это задание найти число, умножая которое на 0, получится 10. А мы уже разобрались, что такого числа не существует, значит, у этого уравнения нет решения, и оно будет априори неверным.
Число 0 можно представить, как некую границу, отделяющую мир реальных чисел от мнимых или отрицательных. Благодаря двусмысленному положению, многие операции с этой числовой величиной не подчиняются математической логике. Невозможность деления на нуль — яркий тому пример. А разрешенные арифметические действия с нулем могут быть выполнены с помощью общепринятых определений.
Раскрытие неопределенностей
Действиями, связанными с делением на 0, занимается один из разделов высшей математики — математический анализ. В нем используется такое понятие, как бесконечность (бесконечно большая величина). Одно из ее определений — это предел, к которому стремится выражение а/Х при Х, стремящемся к нулю. Здесь а — любое ненулевое действительное число. Если в этом выражении уменьшать значение X, то результат будет увеличиваться, пока, в конце концов, не подойдет к бесконечности. С этой величиной можно делать различные математические действия:
- прибавлять любые числа;
- вычитать числа, не равные бесконечности;
- умножать на значения, не равные 0 и бесконечности;
- возводить в степень, не равную 0.
В результате получится бесконечность. Следующие выражения дают в результате полную неопределенность:
- бесконечность минус бесконечность;
- бесконечность умножить на 0;
- бесконечность разделить на бесконечность;
- ноль разделить на ноль;
- ноль умножить на бесконечность;
- ноль в нулевой степени;
- бесконечность в степени ноль;
- единица в степени бесконечность.
Над нулем можно проделывать все арифметические операции. Единственное ограничение — он не может быть делителем для любого действительного числа. Результатом деления ненулевого числа на ноль в высшей математике считается бесконечность, а деление нуля на ноль дает неопределенность. В арифметике подобные действия считаются невозможными и бессмысленными.
А что такое ноль?
А ноль — это самая «жирная» пустота из всех вышеперечисленных. Ноль — это полноценное значение численной переменной (например, integer, то есть целого числа).
Представьте, что вы пишете программу, которая обрабатывает прогнозы погоды. Эти данные она получает с погодного сервера. И с этого сервера прилетала переменная temperature. Сравните:
Если temperature === undefined, то, похоже, с сервера не прилетело никакой переменной с температурой. Программа завела переменную для приёма данных, но дальше ничего не произошло. Мы даже не знаем, какого типа данные нам прилетят. А то и вовсе нет никакой переменной.
Если temperature === null, то мы знаем, в каком формате прилетит температура, но сами данные ещё не прилетели.
Если temperature === 0, то температура — ноль градусов (предположим, по Цельсию). Ноль градусов — это вполне себе значение, с которым можно работать — например нарисовать снежинку.
Возвращаясь к метафоре с мешком: ноль — это когда нам объяснили, какой именно нужен мешок, мы его взяли и запихнули в него ноль, который занял всё место. Зачем? Видимо, так надо.
Текст:
Михаил Полянин
Редактор:
Максим Ильяхов
Художник:
Даня Берковский
Корректор:
Ирина Михеева
Вёрстка:
Кирилл Климентьев
Соцсети:
Виталий Вебер
Действия с нулём
В математике число ноль занимает особое место. Дело в том, что оно, по сути дела, означает «ничто», «пустоту», однако его значение действительно трудно переоценить. Для этого достаточно вспомнить хотя бы то, что именно с нулевой отметки начинается отсчет координат положения точки в любой системе координат.
Ноль широко используется в десятичных дробях для определения значений «пустых» разрядов, находящихся как до, так и после запятой. Кроме того, именно с ним связано одно из основополагающих правил арифметики, гласящее о том, что на ноль делить нельзя. Его логика, собственно говоря, проистекает из самой сути этого числа: действительно, невозможно представить, чтобы некая отличное от него значение (да и само оно – тоже) было разделено на «ничто».
Примеры вычисления
С нулем осуществляются все арифметические действия, причем в качестве его «партнеров» по ним могут использоваться целые числа, обычные и десятичные дроби, причем все они могут иметь как положительное, так и отрицательное значение. Приведем примеры их осуществления и некоторые пояснения к ним.
СЛОЖЕНИЕ
При прибавлении нуля к некоторому числу (как целому, так и к дробному, как к положительному, так и к отрицательному) его значение остается абсолютно неизменным.
Пример 1
Двадцать четыре плюс ноль равняется двадцать четыре.
+ =
Пример 2
Семнадцать целых три восьмых плюс ноль равняется семнадцать целых три восьмых.
ВЫЧИТАНИЕ
При вычитании нуля из некоторого числа (целого, дробного, положительного или отрицательного) оставляет его полностью неизменным.
Пример 1
Две тысячи сто пятьдесят два минус ноль равняется две тысячи сто пятьдесят два.
– =
Пример 2
Сорок одна целая три пятых минус ноль равняется сорок одна целая три пятых.
УМНОЖЕНИЕ
При умножении любого числа (целого, дробного, положительного или отрицательного) на ноль получается ноль.
Пример 1
Пятьсот восемьдесят шесть умножить на ноль равняется ноль.
× =
Пример 2
Ноль умножить на сто тридцать пять целых шесть седьмых равняется ноль.
× =
Пример 3
Ноль умножить на ноль равняется ноль.
× =
ДЕЛЕНИЕ
Правила деления чисел друг на друга в тех случаях, когда одно из них представляет собой ноль, различаются в зависимости от того, в какой именно роли выступает сам ноль: делимого или делителя?
В тех случаях, когда ноль представляет собой делимое, результат всегда равен ему же, причем вне зависимости от значения делителя.
Пример 1
Ноль разделить на двести шестьдесят пять равняется ноль.
: =
Пример 2
Ноль разделить на семнадцать пятьсот девяносто шестых равняется ноль.
Делить ноль на ноль согласно правилам математики нельзя. Это означает, что при совершении такой процедуры частное является неопределенным. Таким образом, теоретически оно может представлять собой абсолютно любое число.
: = ибо × =
В математике такая задача, как деление нуля на ноль, не имеет никакого смысла, поскольку ее результат представляет собой бесконечное множество. Это утверждение, однако, справедливо в том случае, если не указаны никакие дополнительные данные, которые могут повлиять на итоговый результат.
Таковые, при их наличии, должны состоять в том, чтобы указывать на степень изменения величины как делимого, так и делителя, причем еще до наступления того момента, когда они превратились в ноль. Если это определено, то такому выражению, как ноль разделить на ноль, в подавляющем большинстве случаев можно придать некий смысл.
Раскрытие неопределенности
В теории пределов значение 0 заменяется условной бесконечно малой переменной величиной. А выражения, в которых при подставлении нужного значения получается деление на ноль, преобразовываются. Ниже представлен стандартный пример раскрытия предела при помощи обычных алгебраических преобразований:
Как видно в примере, простое сокращение дроби приводит ее значение к вполне рациональному ответу.
При рассмотрении пределов тригонометрических функций их выражения стремятся свести к первому замечательному пределу. При рассмотрении пределов, в которых знаменатель обращается в 0 при подставлении предела, используют второй замечательный предел.
Высшая математика
Деление на ноль — это головная боль для школьной математики. Изучаемый в технических вузах математический анализ немного расширяет понятие задач, которые не имеют решения. Например, к уже известному выражению 0:0 добавляются новые, которые не имеют решения в школьных курсах математики:
- бесконечность, разделенная на бесконечность: ∞:∞;
- бесконечность минус бесконечность: ∞−∞;
- единица, возведенная в бесконечную степень: 1∞;
- бесконечность, умноженная на 0: ∞*0;
- некоторые другие.
Элементарными методами решить такие выражения невозможно. Но высшая математика благодаря дополнительным возможностям для ряда подобных примеров дает конечные решения. Особенно это видно в рассмотрении задач из теории пределов.
Объясните почему умножать на ноль можно, а делить на ноль нельзя? почему?
потому что нет такого числа при умнажении которого на ноль получится делимое. 5/0= ты просто не сможешь подобрать частное чтобы 5 получить
Потому что возникает противоречие.
Потому что в 5-ом классе надо было учителя слушать, а не спать на уроке!
потому что при делении появляется неопределённость на множестве чисел, котором производится операция, для детей это не несёт никакой информации.
есть такой раздел математики, в котором это всё-таки можно
<a href=»/» rel=»nofollow» title=»2434739:##:PUBLICATION/DISSHARYPOV/03_3.HTM»></a>
почему нельзя? если очень хочется, то дели и не важно сколько получится. Удачи! приятного времяпровождения!. Потому что математика вообще и арифметика в частности строятся не просто так, как взбредёт в воспалённую голову
Она (арифметика) базируется на системе утверждений, принимаемых без доказательства, так называемых аксиомах.
Главное требование, которое предъявляется к этой системе аксиом — чтобы она была непротиворечива. Примерно так: чтобы нельзя было ЛОГИЧЕСКИ вывести, что 2 Х 2 = 4 и одновременно, чтобы 2 Х 2 = 5.
Так вот, система аксиом арифметики непротиворечива только, если на ноль делить нельзя
Потому что математика вообще и арифметика в частности строятся не просто так, как взбредёт в воспалённую голову. Она (арифметика) базируется на системе утверждений, принимаемых без доказательства, так называемых аксиомах.
Главное требование, которое предъявляется к этой системе аксиом — чтобы она была непротиворечива. Примерно так: чтобы нельзя было ЛОГИЧЕСКИ вывести, что 2 Х 2 = 4 и одновременно, чтобы 2 Х 2 = 5.
Так вот, система аксиом арифметики непротиворечива только, если на ноль делить нельзя.
потому что ноль не должен быть в знаменателе
можно, только получается бесконечность. детям в третьем классе проще сказать, что делить на ноль нельзя, чем объяснить, что такое бесконечность. а вообще, например вот уравнение: 1/0=х. х*0. какое число при умножении ноль получаеться больше ноля? а никакое..
Проверка обратным действием не пройдет. Пусть 5/0=x, тогда должно быть x*0=5, а такого числа нет. Это свойство системы действительных чисел. Тебя же не удивляет, например, что в системе целых чисел два разделить на три нельзя?
Вообще существует много систем чисел, системы целых и действительных чисел, изучаемые в школе — только небольшая часть их. Часть из них, например, комплексные числа или кватернионы, очень важна в технических и научных расчетах, часть — например, гипердействительные числа, октавы, дуалные числа и так далее, — не имеет практического значения.
на ноль делить можно равно бесконечность например сколько раз ты возьмешь 0 чтобы получилось 2 . ты будешь брать ноль бесконечность раз .
Потому что любое число, умноженное на ноль, будет ноль. В проверке нам придётся делить на ноль. Вот и причина!
Ноль — чётное число?
Это может быть интересно
Мать моя, математика!
Если он так необычен (и не забываем, что он не является ни положительным, ни отрицательным), можно ли говорить о его чётности? Интуитивно мы догадываемся, что он чётный, ведь целые числа сменяют друг друга именно по такому принципу: 2 — чётное, 1 — нечётное, следующим должно быть снова чётное. Но странность ноля настораживает, подсказывает, что и в этом вопросе нужно держать ухо востро.
Парадоксальность как раз в том, что никаких особых свойств у ноля в этом вопросе нет. Он является чётным числом.
Какое главное требование он должен пройти в этом случае? Деление на двойку без остатка, и он выдерживает испытание с достоинством: 0/2=0. Получается целое число 0, причём сколько бы мы ни продолжали деление, результат будет получаться одинаковым — можно сказать, что он является «наиболее» чётным или «бесконечно» чётным числом.
Если быть более точным, мы должны взять другое определение с обратной операцией. Чётное число может быть представлено в виде 2x, где x — целое число, но и в таком случае всё просто: 0 = 2 ∙ 0.
Есть и такое свойство чётных чисел, что при сложении двух из них должно получаться снова чётное, проверим:
0 + 2 = 2; 0 + 4 = 4 и т. д.
При всей необычности ноля даже его удивительное соответствие всем критериям кажется странным, не так ли?
Кадр из фильма Даррена Аронофски о числе Пи.
Умножение в столбик двух многозначных натуральных чисел.
Опишем все этапы алгоритма умножения двух многозначных натуральных чисел столбиком.
Описание будем проводить вместе с решением примера. Сейчас будем считать, что в записях умножаемых натуральных чисел справа не находятся цифры . Умножение многозначных натуральных чисел, записи которых оканчиваются нулями, рассмотрим в конце этого пункта.
Умножим столбиком числа 207 на 8 063.
Начинаем с записи множителей друг под другом. Заметим, что удобнее сверху располагать множитель, запись которого состоит из большего количества знаков (в нашем примере сверху запишем число 8 603, так как в его записи 4 знака, а число 207 трехзначное). Если же записи множителей содержат одинаковое количество знаков, то не имеет значения, какой из множителей записывать сверху. Итак, располагаем множители друг под другом, чтобы цифры первого множителя были под цифрами второго множителя справа налево:
Теперь на каждом следующем шаге будем получать так называемые неполные произведения.
Первый этап алгоритма заключается в умножении столбиком первого множителя (в нашем примере это число 8 063) на значение разряда единиц второго множителя (в нашем примере значением разряда единиц числа 207 является число 7). Все действия аналогичны умножению столбиком многозначного числа на однозначное число (при необходимости вернитесь к предыдущему пункту этой статьи), в результате под горизонтальной линией имеем первое неполное произведение. На этом этапе запись примет следующий вид:
Переходим ко второму этапу. На этом этапе умножаем столбиком первый множитель (в нашем примере это число 8 063) на значение разряда десятков второго множителя, если оно не равно нулю. Если значение разряда десятков второго множителя равно нулю, то переходим к следующему этапу (в нашем примере значением разряда десятков числа 207 равно нулю, поэтому, мы перейдем к третьему этапу). Результаты записываем под чертой ниже уже записанного там числа, начиная с позиции, которая соответствует разряду десятков.
На третьем, четвертом и так далее этапах действуем аналогично, умножая столбиком первый множитель (число 8 063) на значение разряда сотен второго множителя (если оно не равно нулю), далее на значение разряда тысяч (если оно не равно нулю) и так далее. Результаты записываем под чертой ниже уже записанных там чисел, начиная с позиции, отвечающей разряду однозначного числа, на которое проводится умножение на данном этапе.
Итак, умножаем число 8 063 на значение разряда сотен числа 207, то есть на число 2. Получаем второе неполное произведение, а решение примера примет следующий вид:
Итак, все неполные произведения вычислены. Остается последний этап алгоритма, на котором складываются все неполные произведения, причем делается это так же, как при сложении в столбик. Сложение производится с использованием уже имеющейся записи (неполные произведения остаются на тех местах, где они и записаны, то есть, они никуда не сдвигаются), снизу проводится еще одна горизонтальная линия, слева ставится знак «+», а результаты сложения записываются под нижней линией. Если в столбце находится только одно число, и при этом в памяти нет запомненного на предыдущем этапе числа, то оно записывается под горизонтальной линией.
В нашем примере получаем:
Образовавшееся внизу число является результатом умножения исходных многозначных натуральных чисел. Итак, произведение чисел 8 063 и 207 равно 1 669 041.
Для наглядности схематично изобразим процесс умножения столбиком двух натуральных чисел.
Покажем решение еще одного примера для закрепления материала.
Вычислять же значения дробей и многозначных чисел в строку бывает довольно затруднительно.
удержать промежуточные результаты в голове порой просто невозможно. Как раз для таких случаев придумано умножение в столбик — этот метод значительно упрощает математические вычисления.
Умножение многозначного числа на однозначное
Допустим, нам нужно умножить 985 на 4. Умножить 985 на 4 – это сложить4 раза число 985, то есть, 985+985+985+985. Мы можем представить каждое из слагаемых 985 в виде суммы его разрядных слагаемых, а именно: 900+80+5. Получится такое выражение:
900+80+5+900+80+5+900+80+5+900+80+5.
Воспользуемся законами сложения и сгруппируем одинаковые слагаемые этого выражения вместе:
900+900+900+900+80+80+80+80+5+5+5+5,
(900+900+900+900)+(80+80+80+80)+(5+5+5+5).
Суммы в скобках мы можем заменить на произведение одинаковых слагаемых и числа этих слагаемых в каждых скобках:
900 ∙4+80 ∙4+5 ∙4.
Таким образом, чтобы умножить многозначное число на однозначное, достаточно умножить это однозначное число на количество единиц в каждом разряде многозначного числа, и сложить полученные результаты.
Умножение в столбик многозначного числа на однозначное
Удобно и быстро умножить многозначное число на однозначное, и при этом не запутаться в расчете помогает запись вычисления в столбик.
Для этого пишем множимое 985, и под цифрой его разряда единиц записываем множитель 4. Проводим под множителем горизонтальную черту, ставим между сомножителями знак умножения (точку или косой крест), и получаем такую запись:
4 раза по 5 единиц – это будет 20 единиц, то есть, 2 десятка и простых единиц. Поэтому, пишем под чертой в разряде единиц , а 2 десятка запоминаем или записываем маленькую цифру 2 над разрядом десятков множимого 985:
4 раза по 8 десятков – это 32 десятка. Прибавим к ним 2 десятка, которые получились после умножения однозначного числа на единицы, получим 32 десятка, то есть, 3 сотни и 2 десятка. Цифру 2 пишем под чертой в разряде десятков, а над разрядом сотен множимого 975 (в уме) ставим маленькую цифру 3:
4 раза по 9 сотен – это 36 сотен. Прибавим к ним 3 сотни, которые держим в уме, получаем 39 сотен, или 3 тысячи и 9 сотен. Значит, пишем под горизонтальной чертой в разряде сотен цифру 9 и, поскольку в множимом 985 нет ни одной тысячи, то сразу запишем в результате под чертой цифру 3 в разряде тысяч:
Суть действия
Изучение алгоритма действий при умножении на ноль целесообразно начинать с обозначения сути арифметического действия.
Сущность действия умножить изначально определялась исключительно для натурального числа. Если раскрывать механизм действия, то определенное число, участвующее в вычислении, прибавляется к самому себе.
При этом важно учитывать количество прибавлений. В зависимости от данного критерия получается различный результат
Прибавление числа относительно самого себя определяет такое его свойство, ка натуральность.
Рассмотрим на примере. Необходимо число 15 умножить на 3. При умножении на 3 число 15 троекратно увеличивается в своей величине. Иными словами, действие выглядит как 15 * 3 = 15 + 15 + 15 = 45. Основываясь на механизме расчета, становится очевидным, если число умножить на другое натуральное число, возникает подобие сложения в упрощенном виде.
Алгоритм действий при умножении на 0 целесообразно начинать с предоставления характеристики на ноль.
Следует отметить, что подобное мнение в современном мировом научном обществе отличается от точки зрения древних восточных ученых. Согласно теории, которой они придерживались, ноль приравнивался к бесконечности.
Иными словами, если умножить на ноль, то получится многообразие вариантов. В нулевом значении ученые рассматривали некое подобие глубины мироздания.
В качестве подтверждения возможности умножить на 0 математики приводили следующий факт. Если рядом с любым натуральным числом поставить 0, то получится значение, превышающее исходное в десятки раз.
Приведенный пример является одним из аргументов. Кроме доказательства подобного рода, существует множество других примеров. Именно они лежат в основе непрекращающихся споров при умножении на пустоту.
Действия с нулем
Для начала необходимо определить, какие действия с нулем можно выполнять. Существует несколько видов, которые объясняют еще в школьной программе:
- сложение;
- умножение;
- вычитание;
- деление;
- возведение в степень.
Если при сложении к любой цифре прибавить 0, то она останется прежней и не поменяет своего числового значения. То же произойдет, если отнять 0.
При умножении и делении все обстоит немного иначе. Если умножить любое число на 0, то и произведение тоже станет нулевым.
Рассмотрим пример:
0*5=0
Запишем это как сложение:
0+0+0+0+0=0
Всего складываемых нолей пять, вот и выходит:
0*5=0
Попробуем один умножить на 0. Результат также будет нулевым.
Ноль можно разделить на любое другое число, не равное ему. В этом случае выходит дробь, значение которой будет нулевым.
Если 0 делить на отрицательное число, то выйдет все тот же 0:
0/(-5)=0
Можно возвести 0 в нулевую степень. В таком случае выйдет 1
При этом важно помнить, что выражение «0 в нулевой степени» абсолютно бессмысленно. Если попытаться возвести его в любую степень, то все-равно будет 0
Пример:
04=0*0*0*0
Пользуемся правилом умножения, получаем 0.
Так можно ли делить или нет?
Чтобы понять, можно делить на 0 или нет, обращаемся к высшей математике. Школьные учителя утверждают, что данная цифра — это ничто. То есть когда говорят, что 0 ручек, это значит, что совсем нет ручек. В высшей математике понятие «ноль» более широкое. Оно вовсе не означает пустоту. Здесь это неопределенность, так как если провести исследование, то получается, что при делении 0 на 0 мы можем в результате получить другое число.
Для математиков нет понятий «деление» и «вычитание». Допустим: если от пяти отнять три, то останется два. Так выглядит вычитание. Однако, математики запишут это таким образом:
X+3=5
Таким образом, неизвестной разностью является некое число, которое прибавляют к 3, чтобы вышло 5. То есть, не нужно ничего вычитать, нужно найти подходящий показатель. Это правило действует для сложения.
Иначе дела обстоят с правилами умножения и деления. Известно, что умножение на ноль приводит к нулевому результату. Например, если 3/0=X, тогда, если перевернуть запись, получится 3*X=0. А число, которое умножалось на 0 даст 0 и в произведении. Как результат, числа, которое бы давало в произведении с 0 величину, отличную от ноля, не существует. А значит, деление на ноль бессмысленно, то есть оно подходит к нашему правилу.
Но что будет, если попытаться поделить 0 на себя же? Возьмем как X некую неопределенную цифру. Образуется уравнение 0*X=0. Его можно решить.
Если мы попробуем взять вместо X ноль, то мы получим 0/0=0. Но если вместо X взять, например, 1, и провести деление, то в конечном итоге окажется 0/0=1.
В этом случае выйдет, что в качестве множителя можно использовать другое число. Итогом будет бесконечное множество разных чисел. Деление на 0 имеет смысл, но тогда появляется некое условие, благодаря которому мы сможем все-таки выбрать одну подходящую цифру. Это действие называется «раскрытием неопределенности». В арифметике же деление на ноль снова потеряет смысл, так как не будет возможности выбрать из множеств
История нуля
Ноль является точкой отсчета во всех стандартных системах исчисления. Европейцы стали использовать это число сравнительно недавно, но мудрецы Древней Индии пользовались нулем за тысячу лет до того, как пустое число стало регулярно использоваться европейскими математиками. Ещё раньше индийцев ноль являлся обязательной величиной в числовой системе майя. Этот американский народ использовал двенадцатеричную систему исчисления, а нулем у них начинался первый день каждого месяца. Интересно, что у майя знак, обозначающий «ноль», полностью совпадал со знаком, определяющим «бесконечность». Таким образом, древние майя делали вывод о тождественности и непознаваемости этих величин.